Songxiang Zhu , Lingyun Kong , Yi Peng , Qilan Zeng , Biao Feng , Ouyang Jian , Pinhui Zhao , Wenfeng Zhang , Zheng Li
{"title":"长链烷基乳化剂诱导沥青颗粒分散:亲油性增强效应","authors":"Songxiang Zhu , Lingyun Kong , Yi Peng , Qilan Zeng , Biao Feng , Ouyang Jian , Pinhui Zhao , Wenfeng Zhang , Zheng Li","doi":"10.1016/j.conbuildmat.2024.138275","DOIUrl":null,"url":null,"abstract":"<div><p>The structure of the lipophilic groups within the emulsifiers plays a pivotal role in uniformly dispersing the asphalt particles in the water regarding the storage and thermal stability of emulsified asphalt. This study combines laboratory experiments with molecular dynamics simulations, investigating the influence of alkyl chain length on emulsified asphalt dispersion and behavior at the oil/water interface. The results reveal that long-chain alkyl emulsifiers (C<sub>16</sub>TAC and C<sub>18</sub>TAC) present a lipophilicity-enhancement effect. This phenomenon increases the free volume fraction of emulsified asphalt, reducing viscosity and improving the compatibility of emulsion. This results in smaller asphalt particle sizes (D50 = 1.982μm) and more uniform dispersion. Vigorously lipophilic long-chain alkyl promotes emulsifier molecular migration towards the asphalt phase, thickening the oil/water interfacial layer and reducing interfacial tension and energy by more than 90 %. Notely, long-chain alkyl emulsifiers establish strong hydrogen bonds with water molecules, leading to water molecule aggregation into a hydration layer. Laboratory experimental results demonstrate that this lipophilicity-enhancement effect significantly improves the storage and thermal stability of emulsified asphalt. This research recommends long-chain alkyl emulsifiers in developing and designing energy-efficient pavement engineering regarding high-performance emulsified asphalt.</p></div>","PeriodicalId":288,"journal":{"name":"Construction and Building Materials","volume":"449 ","pages":"Article 138275"},"PeriodicalIF":7.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-chain alkyl emulsifiers induced asphalt particle dispersion: Lipophilicity-enhancement effect\",\"authors\":\"Songxiang Zhu , Lingyun Kong , Yi Peng , Qilan Zeng , Biao Feng , Ouyang Jian , Pinhui Zhao , Wenfeng Zhang , Zheng Li\",\"doi\":\"10.1016/j.conbuildmat.2024.138275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The structure of the lipophilic groups within the emulsifiers plays a pivotal role in uniformly dispersing the asphalt particles in the water regarding the storage and thermal stability of emulsified asphalt. This study combines laboratory experiments with molecular dynamics simulations, investigating the influence of alkyl chain length on emulsified asphalt dispersion and behavior at the oil/water interface. The results reveal that long-chain alkyl emulsifiers (C<sub>16</sub>TAC and C<sub>18</sub>TAC) present a lipophilicity-enhancement effect. This phenomenon increases the free volume fraction of emulsified asphalt, reducing viscosity and improving the compatibility of emulsion. This results in smaller asphalt particle sizes (D50 = 1.982μm) and more uniform dispersion. Vigorously lipophilic long-chain alkyl promotes emulsifier molecular migration towards the asphalt phase, thickening the oil/water interfacial layer and reducing interfacial tension and energy by more than 90 %. Notely, long-chain alkyl emulsifiers establish strong hydrogen bonds with water molecules, leading to water molecule aggregation into a hydration layer. Laboratory experimental results demonstrate that this lipophilicity-enhancement effect significantly improves the storage and thermal stability of emulsified asphalt. This research recommends long-chain alkyl emulsifiers in developing and designing energy-efficient pavement engineering regarding high-performance emulsified asphalt.</p></div>\",\"PeriodicalId\":288,\"journal\":{\"name\":\"Construction and Building Materials\",\"volume\":\"449 \",\"pages\":\"Article 138275\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Construction and Building Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950061824034172\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Construction and Building Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950061824034172","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
The structure of the lipophilic groups within the emulsifiers plays a pivotal role in uniformly dispersing the asphalt particles in the water regarding the storage and thermal stability of emulsified asphalt. This study combines laboratory experiments with molecular dynamics simulations, investigating the influence of alkyl chain length on emulsified asphalt dispersion and behavior at the oil/water interface. The results reveal that long-chain alkyl emulsifiers (C16TAC and C18TAC) present a lipophilicity-enhancement effect. This phenomenon increases the free volume fraction of emulsified asphalt, reducing viscosity and improving the compatibility of emulsion. This results in smaller asphalt particle sizes (D50 = 1.982μm) and more uniform dispersion. Vigorously lipophilic long-chain alkyl promotes emulsifier molecular migration towards the asphalt phase, thickening the oil/water interfacial layer and reducing interfacial tension and energy by more than 90 %. Notely, long-chain alkyl emulsifiers establish strong hydrogen bonds with water molecules, leading to water molecule aggregation into a hydration layer. Laboratory experimental results demonstrate that this lipophilicity-enhancement effect significantly improves the storage and thermal stability of emulsified asphalt. This research recommends long-chain alkyl emulsifiers in developing and designing energy-efficient pavement engineering regarding high-performance emulsified asphalt.
期刊介绍:
Construction and Building Materials offers an international platform for sharing innovative and original research and development in the realm of construction and building materials, along with their practical applications in new projects and repair practices. The journal publishes a diverse array of pioneering research and application papers, detailing laboratory investigations and, to a limited extent, numerical analyses or reports on full-scale projects. Multi-part papers are discouraged.
Additionally, Construction and Building Materials features comprehensive case studies and insightful review articles that contribute to new insights in the field. Our focus is on papers related to construction materials, excluding those on structural engineering, geotechnics, and unbound highway layers. Covered materials and technologies encompass cement, concrete reinforcement, bricks and mortars, additives, corrosion technology, ceramics, timber, steel, polymers, glass fibers, recycled materials, bamboo, rammed earth, non-conventional building materials, bituminous materials, and applications in railway materials.