Song Yang , Rui Li , Hongzhou Zhu , Yurong Qin , Chunxiang Huang
{"title":"增强热固性环氧沥青韧性的最新技术回顾","authors":"Song Yang , Rui Li , Hongzhou Zhu , Yurong Qin , Chunxiang Huang","doi":"10.1016/j.conbuildmat.2024.137660","DOIUrl":null,"url":null,"abstract":"<div><p>Epoxy asphalt is widely utilized for steel bridge deck pavement due to its excellent performance. However, its inherent brittleness makes the pavement layer prone to cracking under low-temperature loading conditions. Numerous studies have been conducted to explore singular modification methods, yet the issue remains unresolved. This review summarizes the research progress on multiple mechanisms and strategies for toughening epoxy asphalt materials. It discusses representative studies involving modifiers such as rubber elastomers, thermoplastic polymers, hyperbranched polyesters, and fibers introduced at various levels including epoxy resin, epoxy asphalt, and epoxy asphalt concrete. The review elaborates on multiscale mechanisms including enhanced damping, cooperative deformation, increased flexibility of the framework, and cooperative stress relaxation. The results indicate that while single modification methods contribute to enhancing the toughness of epoxy asphalt materials, multi-level, multi-mechanism modifications are superior to singular modifications. Looking ahead, the design of functionalized nano-reinforcement materials and multi-component interface-compatible adjustive materials holds promise for enhancing the performance of epoxy asphalt composites to meet increasingly stringent infrastructure demands. This research provides a new perspective for the comprehensive optimization of multifunctional composite materials.</p></div>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"449 ","pages":"Article 137660"},"PeriodicalIF":4.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Review of the state-of-the-art techniques for enhancing the toughness of thermosetting epoxy asphalt\",\"authors\":\"Song Yang , Rui Li , Hongzhou Zhu , Yurong Qin , Chunxiang Huang\",\"doi\":\"10.1016/j.conbuildmat.2024.137660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Epoxy asphalt is widely utilized for steel bridge deck pavement due to its excellent performance. However, its inherent brittleness makes the pavement layer prone to cracking under low-temperature loading conditions. Numerous studies have been conducted to explore singular modification methods, yet the issue remains unresolved. This review summarizes the research progress on multiple mechanisms and strategies for toughening epoxy asphalt materials. It discusses representative studies involving modifiers such as rubber elastomers, thermoplastic polymers, hyperbranched polyesters, and fibers introduced at various levels including epoxy resin, epoxy asphalt, and epoxy asphalt concrete. The review elaborates on multiscale mechanisms including enhanced damping, cooperative deformation, increased flexibility of the framework, and cooperative stress relaxation. The results indicate that while single modification methods contribute to enhancing the toughness of epoxy asphalt materials, multi-level, multi-mechanism modifications are superior to singular modifications. Looking ahead, the design of functionalized nano-reinforcement materials and multi-component interface-compatible adjustive materials holds promise for enhancing the performance of epoxy asphalt composites to meet increasingly stringent infrastructure demands. This research provides a new perspective for the comprehensive optimization of multifunctional composite materials.</p></div>\",\"PeriodicalId\":7,\"journal\":{\"name\":\"ACS Applied Polymer Materials\",\"volume\":\"449 \",\"pages\":\"Article 137660\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Polymer Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950061824028022\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950061824028022","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Review of the state-of-the-art techniques for enhancing the toughness of thermosetting epoxy asphalt
Epoxy asphalt is widely utilized for steel bridge deck pavement due to its excellent performance. However, its inherent brittleness makes the pavement layer prone to cracking under low-temperature loading conditions. Numerous studies have been conducted to explore singular modification methods, yet the issue remains unresolved. This review summarizes the research progress on multiple mechanisms and strategies for toughening epoxy asphalt materials. It discusses representative studies involving modifiers such as rubber elastomers, thermoplastic polymers, hyperbranched polyesters, and fibers introduced at various levels including epoxy resin, epoxy asphalt, and epoxy asphalt concrete. The review elaborates on multiscale mechanisms including enhanced damping, cooperative deformation, increased flexibility of the framework, and cooperative stress relaxation. The results indicate that while single modification methods contribute to enhancing the toughness of epoxy asphalt materials, multi-level, multi-mechanism modifications are superior to singular modifications. Looking ahead, the design of functionalized nano-reinforcement materials and multi-component interface-compatible adjustive materials holds promise for enhancing the performance of epoxy asphalt composites to meet increasingly stringent infrastructure demands. This research provides a new perspective for the comprehensive optimization of multifunctional composite materials.
期刊介绍:
ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.