{"title":"优化聚焦超声参数以获得具有长期稳定性的无表面活性剂纳米乳液的研究","authors":"Jiyun Lee , Seonae Hwangbo","doi":"10.1016/j.ultras.2024.107462","DOIUrl":null,"url":null,"abstract":"<div><p>Stable-state emulsions with no phase separation and dispersed-particle aggregation can be utilized in various fields, such as cosmetics, pharmaceuticals, food, and drug delivery. However, the physicochemical properties and stability of emulsions are significantly affected by factors such as concentration, mixing method, droplet size, and temperature. Surfactants (emulsifiers), which are used to form stable emulsions, adversely affect the human body and environment and influence the properties of emulsions, thereby limiting their development. This study manufactured stable emulsions without a surfactant using ultrasonic equipment. The oil particle size distributions, zeta potentials, microscopic observations, and emulsion stabilities of six emulsions (with an oil content of 1 %) prepared using different frequencies (250–1000 kHz) and output powers (50–150 W) were analyzed, immediately after preparation at 25 °C and 3 d thereafter. Finally, it was possible to manufacture a stable emulsion without particle size change or phase separation with a particle size in the 100 nm range and a surface charge value of −40 mV or more under conditions of 400 kHz and 150 W. This study proposed a method (with the optimum conditions) for manufacturing surfactant-free emulsions by analyzing the stability of emulsions manufactured under various frequencies and output-power conditions. The proposed method could open new frontiers in emulsion development and applications.</p></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"145 ","pages":"Article 107462"},"PeriodicalIF":3.8000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0041624X24002257/pdfft?md5=9d46364a39481b0e3595f33186f384d9&pid=1-s2.0-S0041624X24002257-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Research on optimizing focused ultrasonic parameters for Surfactant-Free nanoemulsion with prolonged stability\",\"authors\":\"Jiyun Lee , Seonae Hwangbo\",\"doi\":\"10.1016/j.ultras.2024.107462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Stable-state emulsions with no phase separation and dispersed-particle aggregation can be utilized in various fields, such as cosmetics, pharmaceuticals, food, and drug delivery. However, the physicochemical properties and stability of emulsions are significantly affected by factors such as concentration, mixing method, droplet size, and temperature. Surfactants (emulsifiers), which are used to form stable emulsions, adversely affect the human body and environment and influence the properties of emulsions, thereby limiting their development. This study manufactured stable emulsions without a surfactant using ultrasonic equipment. The oil particle size distributions, zeta potentials, microscopic observations, and emulsion stabilities of six emulsions (with an oil content of 1 %) prepared using different frequencies (250–1000 kHz) and output powers (50–150 W) were analyzed, immediately after preparation at 25 °C and 3 d thereafter. Finally, it was possible to manufacture a stable emulsion without particle size change or phase separation with a particle size in the 100 nm range and a surface charge value of −40 mV or more under conditions of 400 kHz and 150 W. This study proposed a method (with the optimum conditions) for manufacturing surfactant-free emulsions by analyzing the stability of emulsions manufactured under various frequencies and output-power conditions. The proposed method could open new frontiers in emulsion development and applications.</p></div>\",\"PeriodicalId\":23522,\"journal\":{\"name\":\"Ultrasonics\",\"volume\":\"145 \",\"pages\":\"Article 107462\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0041624X24002257/pdfft?md5=9d46364a39481b0e3595f33186f384d9&pid=1-s2.0-S0041624X24002257-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0041624X24002257\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041624X24002257","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
Research on optimizing focused ultrasonic parameters for Surfactant-Free nanoemulsion with prolonged stability
Stable-state emulsions with no phase separation and dispersed-particle aggregation can be utilized in various fields, such as cosmetics, pharmaceuticals, food, and drug delivery. However, the physicochemical properties and stability of emulsions are significantly affected by factors such as concentration, mixing method, droplet size, and temperature. Surfactants (emulsifiers), which are used to form stable emulsions, adversely affect the human body and environment and influence the properties of emulsions, thereby limiting their development. This study manufactured stable emulsions without a surfactant using ultrasonic equipment. The oil particle size distributions, zeta potentials, microscopic observations, and emulsion stabilities of six emulsions (with an oil content of 1 %) prepared using different frequencies (250–1000 kHz) and output powers (50–150 W) were analyzed, immediately after preparation at 25 °C and 3 d thereafter. Finally, it was possible to manufacture a stable emulsion without particle size change or phase separation with a particle size in the 100 nm range and a surface charge value of −40 mV or more under conditions of 400 kHz and 150 W. This study proposed a method (with the optimum conditions) for manufacturing surfactant-free emulsions by analyzing the stability of emulsions manufactured under various frequencies and output-power conditions. The proposed method could open new frontiers in emulsion development and applications.
期刊介绍:
Ultrasonics is the only internationally established journal which covers the entire field of ultrasound research and technology and all its many applications. Ultrasonics contains a variety of sections to keep readers fully informed and up-to-date on the whole spectrum of research and development throughout the world. Ultrasonics publishes papers of exceptional quality and of relevance to both academia and industry. Manuscripts in which ultrasonics is a central issue and not simply an incidental tool or minor issue, are welcomed.
As well as top quality original research papers and review articles by world renowned experts, Ultrasonics also regularly features short communications, a calendar of forthcoming events and special issues dedicated to topical subjects.