{"title":"基于第一原理的 Rb2XHgCl6(X= Al、Y)卤化物双包晶石在未来高效技术中的应用探索","authors":"","doi":"10.1016/j.jpcs.2024.112332","DOIUrl":null,"url":null,"abstract":"<div><p>Herein, the first principles calculations are performed to explore the physical features of Rb<sub>2</sub>XHgCl<sub>6</sub> (X = Al, Y) to unravel their potential candidacy for optoelectronic and thermoelectric applications. The geometry optimization reveals that Rb<sub>2</sub>XHgCl<sub>6</sub> (X = Al, Y) are stable in cubic structure with ferromagnetic nature. Analysis of tolerance factor and formation energies uncovered the thermodynamically stability. Moreover, the semiconductor nature of considered compounds is confirmed by spin dependent electronic characteristics. Rb<sub>2</sub>XHgCl<sub>6</sub> (X = Al, Y) revealed maximum absorption of ultraviolet light which prove that corresponding materials are appropriate for optoelectronic devices. Using BoltzTraP package, the thermoelectric (TE) characteristics are computed within range of 100–800 K. Results suggest that the resultant material are appropriate candidates for spintronic, optoelectronic and TE applications and more stimulate experimentalist to discover these materials for their usage in practical extent.</p></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A first principles based exploration of Rb2XHgCl6 (X= Al, Y) halide double perovskites for their applications in futuristic efficient technologies\",\"authors\":\"\",\"doi\":\"10.1016/j.jpcs.2024.112332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Herein, the first principles calculations are performed to explore the physical features of Rb<sub>2</sub>XHgCl<sub>6</sub> (X = Al, Y) to unravel their potential candidacy for optoelectronic and thermoelectric applications. The geometry optimization reveals that Rb<sub>2</sub>XHgCl<sub>6</sub> (X = Al, Y) are stable in cubic structure with ferromagnetic nature. Analysis of tolerance factor and formation energies uncovered the thermodynamically stability. Moreover, the semiconductor nature of considered compounds is confirmed by spin dependent electronic characteristics. Rb<sub>2</sub>XHgCl<sub>6</sub> (X = Al, Y) revealed maximum absorption of ultraviolet light which prove that corresponding materials are appropriate for optoelectronic devices. Using BoltzTraP package, the thermoelectric (TE) characteristics are computed within range of 100–800 K. Results suggest that the resultant material are appropriate candidates for spintronic, optoelectronic and TE applications and more stimulate experimentalist to discover these materials for their usage in practical extent.</p></div>\",\"PeriodicalId\":16811,\"journal\":{\"name\":\"Journal of Physics and Chemistry of Solids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics and Chemistry of Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022369724004670\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369724004670","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
本文通过第一性原理计算来探索 Rb2XHgCl6(X = Al,Y)的物理特性,从而揭示其在光电和热电应用中的潜在候选特性。几何优化结果表明,Rb2XHgCl6 (X = Al, Y) 具有稳定的立方结构和铁磁性。对容限因子和形成能的分析揭示了热力学稳定性。此外,自旋相关电子特性也证实了所考虑化合物的半导体性质。Rb2XHgCl6(X = Al、Y)显示出对紫外线的最大吸收,这证明相应的材料适用于光电设备。使用 BoltzTraP 软件包计算了 100-800 K 范围内的热电(TE)特性。研究结果表明,所得到的材料是自旋电子、光电和 TE 应用的合适候选材料,这将进一步激励实验人员发现这些材料,并将其用于实际应用。
A first principles based exploration of Rb2XHgCl6 (X= Al, Y) halide double perovskites for their applications in futuristic efficient technologies
Herein, the first principles calculations are performed to explore the physical features of Rb2XHgCl6 (X = Al, Y) to unravel their potential candidacy for optoelectronic and thermoelectric applications. The geometry optimization reveals that Rb2XHgCl6 (X = Al, Y) are stable in cubic structure with ferromagnetic nature. Analysis of tolerance factor and formation energies uncovered the thermodynamically stability. Moreover, the semiconductor nature of considered compounds is confirmed by spin dependent electronic characteristics. Rb2XHgCl6 (X = Al, Y) revealed maximum absorption of ultraviolet light which prove that corresponding materials are appropriate for optoelectronic devices. Using BoltzTraP package, the thermoelectric (TE) characteristics are computed within range of 100–800 K. Results suggest that the resultant material are appropriate candidates for spintronic, optoelectronic and TE applications and more stimulate experimentalist to discover these materials for their usage in practical extent.
期刊介绍:
The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems.
Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal:
Low-dimensional systems
Exotic states of quantum electron matter including topological phases
Energy conversion and storage
Interfaces, nanoparticles and catalysts.