球形颗粒在可压缩气流中的空气动力和扭矩建模

IF 3.6 2区 工程技术 Q1 MECHANICS
Yibin Du , Ming Yu , Chongwen Jiang , Xianxu Yuan
{"title":"球形颗粒在可压缩气流中的空气动力和扭矩建模","authors":"Yibin Du ,&nbsp;Ming Yu ,&nbsp;Chongwen Jiang ,&nbsp;Xianxu Yuan","doi":"10.1016/j.ijmultiphaseflow.2024.104996","DOIUrl":null,"url":null,"abstract":"<div><p>In the present study, we conduct numerical simulations of compressible flows around spheroid particles, for the purpose of refining empirical formulas for drag force, lift force, and pitching torque acting on them. Through an analysis of approximately a thousand numerical simulation cases spanning a wide range of Mach numbers, Reynolds numbers and particle aspect ratios, we first identify the crucial parameters that are strongly correlated with the forces and torques via Spearman correlation analysis, based on which the empirical formulas for the drag force, lift force and pitching torque coefficients are refined. The novel formulas developed for compressible flows exhibit consistency with their incompressible counterparts at low Mach number limits and, moreover, yield accurate predictions with average relative errors of less than 5%. This underscores their robustness and reliability in predicting aerodynamic loads on spheroidal particles under various flow conditions.</p></div>","PeriodicalId":339,"journal":{"name":"International Journal of Multiphase Flow","volume":"181 ","pages":"Article 104996"},"PeriodicalIF":3.6000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling aerodynamic forces and torques of spheroid particles in compressible flows\",\"authors\":\"Yibin Du ,&nbsp;Ming Yu ,&nbsp;Chongwen Jiang ,&nbsp;Xianxu Yuan\",\"doi\":\"10.1016/j.ijmultiphaseflow.2024.104996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the present study, we conduct numerical simulations of compressible flows around spheroid particles, for the purpose of refining empirical formulas for drag force, lift force, and pitching torque acting on them. Through an analysis of approximately a thousand numerical simulation cases spanning a wide range of Mach numbers, Reynolds numbers and particle aspect ratios, we first identify the crucial parameters that are strongly correlated with the forces and torques via Spearman correlation analysis, based on which the empirical formulas for the drag force, lift force and pitching torque coefficients are refined. The novel formulas developed for compressible flows exhibit consistency with their incompressible counterparts at low Mach number limits and, moreover, yield accurate predictions with average relative errors of less than 5%. This underscores their robustness and reliability in predicting aerodynamic loads on spheroidal particles under various flow conditions.</p></div>\",\"PeriodicalId\":339,\"journal\":{\"name\":\"International Journal of Multiphase Flow\",\"volume\":\"181 \",\"pages\":\"Article 104996\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Multiphase Flow\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301932224002738\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Multiphase Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301932224002738","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们对球形颗粒周围的可压缩流进行了数值模拟,目的是完善作用在颗粒上的阻力、升力和俯仰力矩的经验公式。通过对跨越各种马赫数、雷诺数和颗粒长宽比的近千个数值模拟案例进行分析,我们首先通过斯皮尔曼相关性分析确定了与力和力矩密切相关的关键参数,并在此基础上完善了阻力、升力和俯仰力矩系数的经验公式。为可压缩流开发的新公式在低马赫数限制条件下与不可压缩流的公式一致,而且预测准确,平均相对误差小于 5%。这突出表明,在预测球形颗粒在各种流动条件下的空气动力载荷时,这些公式非常稳健可靠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Modelling aerodynamic forces and torques of spheroid particles in compressible flows

Modelling aerodynamic forces and torques of spheroid particles in compressible flows

In the present study, we conduct numerical simulations of compressible flows around spheroid particles, for the purpose of refining empirical formulas for drag force, lift force, and pitching torque acting on them. Through an analysis of approximately a thousand numerical simulation cases spanning a wide range of Mach numbers, Reynolds numbers and particle aspect ratios, we first identify the crucial parameters that are strongly correlated with the forces and torques via Spearman correlation analysis, based on which the empirical formulas for the drag force, lift force and pitching torque coefficients are refined. The novel formulas developed for compressible flows exhibit consistency with their incompressible counterparts at low Mach number limits and, moreover, yield accurate predictions with average relative errors of less than 5%. This underscores their robustness and reliability in predicting aerodynamic loads on spheroidal particles under various flow conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
10.50%
发文量
244
审稿时长
4 months
期刊介绍: The International Journal of Multiphase Flow publishes analytical, numerical and experimental articles of lasting interest. The scope of the journal includes all aspects of mass, momentum and energy exchange phenomena among different phases such as occur in disperse flows, gas–liquid and liquid–liquid flows, flows in porous media, boiling, granular flows and others. The journal publishes full papers, brief communications and conference announcements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信