Rain Man Raja, Takahiro Yamaguchi, Tsukasa Mizutani
{"title":"利用有限差分时域法处理透地雷达图像,准确估算地下管道特性","authors":"Rain Man Raja, Takahiro Yamaguchi, Tsukasa Mizutani","doi":"10.1016/j.ndteint.2024.103235","DOIUrl":null,"url":null,"abstract":"<div><p>The increasing length of subsurface pipe causes overlapping, accumulation, and occasionally the old pipe layout is not also available. Consequently, accidents, damages, time delays, and financial losses occur during construction of new structures or installation of new pipes. Therefore, depth, radius, material of the existing pipe, and map of pipe are indispensable for knowing proper construction planning. In this article, an algorithm is proposed to estimate the properties of subsurface pipes and show 3D maps. Using this algorithm, the radius of the field pipes was estimated with 83, 67, and 89 % accuracy and depth with 95, 95, and 98 % accuracy. The effect of pipe radius should be considered to assess the pipe depth with higher accuracy. The material of the field pipe was successfully determined using the evaluated relative permittivity. A 3D map of the field pipe was developed by applying the tracing algorithm and linear regression on estimated depth.</p></div>","PeriodicalId":18868,"journal":{"name":"Ndt & E International","volume":"148 ","pages":"Article 103235"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite-difference time-domain method of ground penetrating radar images for accurate estimation of subsurface pipe properties\",\"authors\":\"Rain Man Raja, Takahiro Yamaguchi, Tsukasa Mizutani\",\"doi\":\"10.1016/j.ndteint.2024.103235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The increasing length of subsurface pipe causes overlapping, accumulation, and occasionally the old pipe layout is not also available. Consequently, accidents, damages, time delays, and financial losses occur during construction of new structures or installation of new pipes. Therefore, depth, radius, material of the existing pipe, and map of pipe are indispensable for knowing proper construction planning. In this article, an algorithm is proposed to estimate the properties of subsurface pipes and show 3D maps. Using this algorithm, the radius of the field pipes was estimated with 83, 67, and 89 % accuracy and depth with 95, 95, and 98 % accuracy. The effect of pipe radius should be considered to assess the pipe depth with higher accuracy. The material of the field pipe was successfully determined using the evaluated relative permittivity. A 3D map of the field pipe was developed by applying the tracing algorithm and linear regression on estimated depth.</p></div>\",\"PeriodicalId\":18868,\"journal\":{\"name\":\"Ndt & E International\",\"volume\":\"148 \",\"pages\":\"Article 103235\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ndt & E International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0963869524002007\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ndt & E International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963869524002007","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Finite-difference time-domain method of ground penetrating radar images for accurate estimation of subsurface pipe properties
The increasing length of subsurface pipe causes overlapping, accumulation, and occasionally the old pipe layout is not also available. Consequently, accidents, damages, time delays, and financial losses occur during construction of new structures or installation of new pipes. Therefore, depth, radius, material of the existing pipe, and map of pipe are indispensable for knowing proper construction planning. In this article, an algorithm is proposed to estimate the properties of subsurface pipes and show 3D maps. Using this algorithm, the radius of the field pipes was estimated with 83, 67, and 89 % accuracy and depth with 95, 95, and 98 % accuracy. The effect of pipe radius should be considered to assess the pipe depth with higher accuracy. The material of the field pipe was successfully determined using the evaluated relative permittivity. A 3D map of the field pipe was developed by applying the tracing algorithm and linear regression on estimated depth.
期刊介绍:
NDT&E international publishes peer-reviewed results of original research and development in all categories of the fields of nondestructive testing and evaluation including ultrasonics, electromagnetics, radiography, optical and thermal methods. In addition to traditional NDE topics, the emerging technology area of inspection of civil structures and materials is also emphasized. The journal publishes original papers on research and development of new inspection techniques and methods, as well as on novel and innovative applications of established methods. Papers on NDE sensors and their applications both for inspection and process control, as well as papers describing novel NDE systems for structural health monitoring and their performance in industrial settings are also considered. Other regular features include international news, new equipment and a calendar of forthcoming worldwide meetings. This journal is listed in Current Contents.