Juan Pablo Arrigoni , Gabriela Paladino , Lucas A. Garibaldi , Erik Hedenström , Wennan Zhang , Francisca Laos
{"title":"小规模堆肥在低环境温度下的性能:添加动物副产品和回收沥滤液的影响","authors":"Juan Pablo Arrigoni , Gabriela Paladino , Lucas A. Garibaldi , Erik Hedenström , Wennan Zhang , Francisca Laos","doi":"10.1016/j.wmb.2024.09.003","DOIUrl":null,"url":null,"abstract":"<div><p>Decentralized composting is an emerging method for managing biowaste, engaging waste generators as active recyclers in the waste management cycle. Evaluating performance and identifying optimization opportunities within this composting framework is essential to maximize its benefits and address its challenges. In small-scale composters, fresh waste is continuously mixed with previously added materials, shifting the typical composting process. As with larger systems, the composition of the feedstock influences the temperature profile and the quality of the final product. The issue of whether to include animal-source waste remains controversial in the development of standards and program guidelines. On the other hand, evaluating a leachate recycling method could help prevent nutrient loss and mitigate environmental impacts when bulking agents are lacking. In this study, kitchen and garden wastes were composted in 500-L static composters under cold climate conditions. We examined obtained compost stability, maturity, and quality parameters to determine the effects of adding animal by-product waste and/or recycling leachate. Our findings indicate that including animal by-products allows reaching sanitation temperatures under cold weather conditions and that recycling leachates could reduce nutrient losses and alleviate environmental and other user concerns while improving temperature, stability, maturity, and product quality patterns in decentralized composting.</p></div>","PeriodicalId":101276,"journal":{"name":"Waste Management Bulletin","volume":"2 3","pages":"Pages 309-317"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949750724000816/pdfft?md5=eac44d79b19caaef12feb3905011c765&pid=1-s2.0-S2949750724000816-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Performance of small-scale composting in low ambient temperatures: Effects of adding animal by-products and recycling leachates\",\"authors\":\"Juan Pablo Arrigoni , Gabriela Paladino , Lucas A. Garibaldi , Erik Hedenström , Wennan Zhang , Francisca Laos\",\"doi\":\"10.1016/j.wmb.2024.09.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Decentralized composting is an emerging method for managing biowaste, engaging waste generators as active recyclers in the waste management cycle. Evaluating performance and identifying optimization opportunities within this composting framework is essential to maximize its benefits and address its challenges. In small-scale composters, fresh waste is continuously mixed with previously added materials, shifting the typical composting process. As with larger systems, the composition of the feedstock influences the temperature profile and the quality of the final product. The issue of whether to include animal-source waste remains controversial in the development of standards and program guidelines. On the other hand, evaluating a leachate recycling method could help prevent nutrient loss and mitigate environmental impacts when bulking agents are lacking. In this study, kitchen and garden wastes were composted in 500-L static composters under cold climate conditions. We examined obtained compost stability, maturity, and quality parameters to determine the effects of adding animal by-product waste and/or recycling leachate. Our findings indicate that including animal by-products allows reaching sanitation temperatures under cold weather conditions and that recycling leachates could reduce nutrient losses and alleviate environmental and other user concerns while improving temperature, stability, maturity, and product quality patterns in decentralized composting.</p></div>\",\"PeriodicalId\":101276,\"journal\":{\"name\":\"Waste Management Bulletin\",\"volume\":\"2 3\",\"pages\":\"Pages 309-317\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949750724000816/pdfft?md5=eac44d79b19caaef12feb3905011c765&pid=1-s2.0-S2949750724000816-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Waste Management Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949750724000816\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste Management Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949750724000816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance of small-scale composting in low ambient temperatures: Effects of adding animal by-products and recycling leachates
Decentralized composting is an emerging method for managing biowaste, engaging waste generators as active recyclers in the waste management cycle. Evaluating performance and identifying optimization opportunities within this composting framework is essential to maximize its benefits and address its challenges. In small-scale composters, fresh waste is continuously mixed with previously added materials, shifting the typical composting process. As with larger systems, the composition of the feedstock influences the temperature profile and the quality of the final product. The issue of whether to include animal-source waste remains controversial in the development of standards and program guidelines. On the other hand, evaluating a leachate recycling method could help prevent nutrient loss and mitigate environmental impacts when bulking agents are lacking. In this study, kitchen and garden wastes were composted in 500-L static composters under cold climate conditions. We examined obtained compost stability, maturity, and quality parameters to determine the effects of adding animal by-product waste and/or recycling leachate. Our findings indicate that including animal by-products allows reaching sanitation temperatures under cold weather conditions and that recycling leachates could reduce nutrient losses and alleviate environmental and other user concerns while improving temperature, stability, maturity, and product quality patterns in decentralized composting.