没有长度为四和五的循环的图形的最大平分线

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Shufei Wu, Yuanyuan Zhong
{"title":"没有长度为四和五的循环的图形的最大平分线","authors":"Shufei Wu,&nbsp;Yuanyuan Zhong","doi":"10.1016/j.dam.2024.08.024","DOIUrl":null,"url":null,"abstract":"<div><p>A bisection of a graph is a bipartition of its vertex set in which the two parts differ in size by at most 1, and its size is the number of edges which across the two parts. Let <span><math><mi>G</mi></math></span> be a graph with <span><math><mi>n</mi></math></span> vertices, <span><math><mi>m</mi></math></span> edges and degree sequence <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span>. Motivated by a few classical results on Max-Cut of graphs, Lin and Zeng proved that if <span><math><mi>G</mi></math></span> is <span><math><mrow><mo>{</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>6</mn></mrow></msub><mo>}</mo></mrow></math></span>-free and has a perfect matching, then <span><math><mi>G</mi></math></span> has a bisection of size at least <span><math><mrow><mi>m</mi><mo>/</mo><mn>2</mn><mo>+</mo><mi>Ω</mi><mrow><mo>(</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><msqrt><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msqrt><mo>)</mo></mrow></mrow></math></span>, and conjectured the same bound holds for <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-free graphs with perfect matchings. In this paper, we confirm the conjecture under the additional condition that <span><math><mi>G</mi></math></span> is <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>-free.</p></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"360 ","pages":"Pages 209-220"},"PeriodicalIF":1.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximum bisections of graphs without cycles of length four and five\",\"authors\":\"Shufei Wu,&nbsp;Yuanyuan Zhong\",\"doi\":\"10.1016/j.dam.2024.08.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A bisection of a graph is a bipartition of its vertex set in which the two parts differ in size by at most 1, and its size is the number of edges which across the two parts. Let <span><math><mi>G</mi></math></span> be a graph with <span><math><mi>n</mi></math></span> vertices, <span><math><mi>m</mi></math></span> edges and degree sequence <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></math></span>. Motivated by a few classical results on Max-Cut of graphs, Lin and Zeng proved that if <span><math><mi>G</mi></math></span> is <span><math><mrow><mo>{</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>6</mn></mrow></msub><mo>}</mo></mrow></math></span>-free and has a perfect matching, then <span><math><mi>G</mi></math></span> has a bisection of size at least <span><math><mrow><mi>m</mi><mo>/</mo><mn>2</mn><mo>+</mo><mi>Ω</mi><mrow><mo>(</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><msqrt><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></msqrt><mo>)</mo></mrow></mrow></math></span>, and conjectured the same bound holds for <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-free graphs with perfect matchings. In this paper, we confirm the conjecture under the additional condition that <span><math><mi>G</mi></math></span> is <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span>-free.</p></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"360 \",\"pages\":\"Pages 209-220\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X24003895\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24003895","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

图的一分为二是其顶点集的两部分,其中两部分的大小最多相差 1,其大小是横跨两部分的边的数量。假设 G 是一个有 n 个顶点、m 条边和阶数序列 d1、d2...、dn 的图。受一些关于图的 Max-Cut 经典结果的启发,Lin 和 Zeng 证明了如果 G 是{C4,C6}-free 并且有一个完全匹配,那么 G 有一个大小至少为 m/2+Ω(∑i=1ndi)的分段。在本文中,我们在 G 无 C5 的附加条件下证实了这一猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximum bisections of graphs without cycles of length four and five

A bisection of a graph is a bipartition of its vertex set in which the two parts differ in size by at most 1, and its size is the number of edges which across the two parts. Let G be a graph with n vertices, m edges and degree sequence d1,d2,,dn. Motivated by a few classical results on Max-Cut of graphs, Lin and Zeng proved that if G is {C4,C6}-free and has a perfect matching, then G has a bisection of size at least m/2+Ω(i=1ndi), and conjectured the same bound holds for C4-free graphs with perfect matchings. In this paper, we confirm the conjecture under the additional condition that G is C5-free.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信