开发可信的代理:通过回放人类痕迹采用神经架构和自适应神经模糊推理系统

IF 5.2 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Naveed Anwer Butt , Mian Muhammad Awais , Samra Shahzadi , Tai-hoon Kim , Imran Ashraf
{"title":"开发可信的代理:通过回放人类痕迹采用神经架构和自适应神经模糊推理系统","authors":"Naveed Anwer Butt ,&nbsp;Mian Muhammad Awais ,&nbsp;Samra Shahzadi ,&nbsp;Tai-hoon Kim ,&nbsp;Imran Ashraf","doi":"10.1016/j.jksuci.2024.102182","DOIUrl":null,"url":null,"abstract":"<div><p>Artificial intelligence (AI) research on video games primarily focused on the imitation of human-like behavior during the past few years. Moreover, to increase the perceived worth of amusement and gratification, there is an enormous rise in the demand for intelligent agents that can imitate human players and video game characters. However, the agents developed using the majority of current approaches are perceived as rather more mechanical, which leads to frustration, and more importantly, failure in engagement. On that account, this study proposes an imitation learning framework to generate human-like behavior for more precise and accurate reproduction. To build a computational model, two learning paradigms are explored, artificial neural networks (ANN) and adaptive neuro-fuzzy inference systems (ANFIS). This study utilized several variations of ANN, including feed-forward, recurrent, extreme learning machines, and regressions, to simulate human player behavior. Furthermore, to find the ideal ANFIS, grid partitioning, subtractive clustering, and fuzzy c-means clustering are used for training. The results demonstrate that ANFIS hybrid intelligence systems trained with subtractive clustering are overall best with an average accuracy of 95%, followed by fuzzy c-means with an average accuracy of 87%. Also, the believability of the obtained AI agents is tested using two statistical methods, i.e., the Mann–Whitney U test and the cosine similarity analysis. Both methods validate that the observed behavior has been reproduced with high accuracy.</p></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319157824002714/pdfft?md5=542b4e8449657f4dbd195276e5fb54c1&pid=1-s2.0-S1319157824002714-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Towards the development of believable agents: Adopting neural architectures and adaptive neuro-fuzzy inference system via playback of human traces\",\"authors\":\"Naveed Anwer Butt ,&nbsp;Mian Muhammad Awais ,&nbsp;Samra Shahzadi ,&nbsp;Tai-hoon Kim ,&nbsp;Imran Ashraf\",\"doi\":\"10.1016/j.jksuci.2024.102182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Artificial intelligence (AI) research on video games primarily focused on the imitation of human-like behavior during the past few years. Moreover, to increase the perceived worth of amusement and gratification, there is an enormous rise in the demand for intelligent agents that can imitate human players and video game characters. However, the agents developed using the majority of current approaches are perceived as rather more mechanical, which leads to frustration, and more importantly, failure in engagement. On that account, this study proposes an imitation learning framework to generate human-like behavior for more precise and accurate reproduction. To build a computational model, two learning paradigms are explored, artificial neural networks (ANN) and adaptive neuro-fuzzy inference systems (ANFIS). This study utilized several variations of ANN, including feed-forward, recurrent, extreme learning machines, and regressions, to simulate human player behavior. Furthermore, to find the ideal ANFIS, grid partitioning, subtractive clustering, and fuzzy c-means clustering are used for training. The results demonstrate that ANFIS hybrid intelligence systems trained with subtractive clustering are overall best with an average accuracy of 95%, followed by fuzzy c-means with an average accuracy of 87%. Also, the believability of the obtained AI agents is tested using two statistical methods, i.e., the Mann–Whitney U test and the cosine similarity analysis. Both methods validate that the observed behavior has been reproduced with high accuracy.</p></div>\",\"PeriodicalId\":48547,\"journal\":{\"name\":\"Journal of King Saud University-Computer and Information Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1319157824002714/pdfft?md5=542b4e8449657f4dbd195276e5fb54c1&pid=1-s2.0-S1319157824002714-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of King Saud University-Computer and Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1319157824002714\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of King Saud University-Computer and Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319157824002714","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在过去几年里,有关视频游戏的人工智能(AI)研究主要集中在模仿人类行为上。此外,为了提高娱乐和满足感的感知价值,对能够模仿人类玩家和视频游戏角色的智能代理的需求也大幅上升。然而,目前使用大多数方法开发的代理被认为是比较机械的,这会导致挫败感,更重要的是,会导致参与失败。有鉴于此,本研究提出了一种模仿学习框架,以生成类似人类的行为,从而实现更精确、更准确的再现。为了建立一个计算模型,我们探索了两种学习范式,即人工神经网络(ANN)和自适应神经模糊推理系统(ANFIS)。本研究利用了几种不同的人工神经网络,包括前馈、递归、极端学习机和回归,来模拟人类球员的行为。此外,为了找到理想的 ANFIS,还使用了网格划分、减法聚类和模糊 c-means 聚类来进行训练。结果表明,使用减法聚类训练的 ANFIS 混合智能系统总体最佳,平均准确率为 95%,其次是模糊 c-means,平均准确率为 87%。此外,还使用两种统计方法,即曼-惠特尼 U 检验和余弦相似性分析,对所获得的人工智能代理的可信度进行了测试。这两种方法都验证了观察到的行为得到了高精度的再现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards the development of believable agents: Adopting neural architectures and adaptive neuro-fuzzy inference system via playback of human traces

Artificial intelligence (AI) research on video games primarily focused on the imitation of human-like behavior during the past few years. Moreover, to increase the perceived worth of amusement and gratification, there is an enormous rise in the demand for intelligent agents that can imitate human players and video game characters. However, the agents developed using the majority of current approaches are perceived as rather more mechanical, which leads to frustration, and more importantly, failure in engagement. On that account, this study proposes an imitation learning framework to generate human-like behavior for more precise and accurate reproduction. To build a computational model, two learning paradigms are explored, artificial neural networks (ANN) and adaptive neuro-fuzzy inference systems (ANFIS). This study utilized several variations of ANN, including feed-forward, recurrent, extreme learning machines, and regressions, to simulate human player behavior. Furthermore, to find the ideal ANFIS, grid partitioning, subtractive clustering, and fuzzy c-means clustering are used for training. The results demonstrate that ANFIS hybrid intelligence systems trained with subtractive clustering are overall best with an average accuracy of 95%, followed by fuzzy c-means with an average accuracy of 87%. Also, the believability of the obtained AI agents is tested using two statistical methods, i.e., the Mann–Whitney U test and the cosine similarity analysis. Both methods validate that the observed behavior has been reproduced with high accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.50
自引率
8.70%
发文量
656
审稿时长
29 days
期刊介绍: In 2022 the Journal of King Saud University - Computer and Information Sciences will become an author paid open access journal. Authors who submit their manuscript after October 31st 2021 will be asked to pay an Article Processing Charge (APC) after acceptance of their paper to make their work immediately, permanently, and freely accessible to all. The Journal of King Saud University Computer and Information Sciences is a refereed, international journal that covers all aspects of both foundations of computer and its practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信