密度和传热可变的达西-福赫海默流的数值离散化

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Jian Huang , Zhen Yue , Jing Zhang , Kai Fu , Xilin Feng
{"title":"密度和传热可变的达西-福赫海默流的数值离散化","authors":"Jian Huang ,&nbsp;Zhen Yue ,&nbsp;Jing Zhang ,&nbsp;Kai Fu ,&nbsp;Xilin Feng","doi":"10.1016/j.cam.2024.116252","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study a heat transfer scenario in Darcy–Forchheimer porous media with variable density. The block-centered finite difference method is applied to discretize the non-isothermal flow equations governing the system. Specifically, the pressure field is modeled using the nonlinear Darcy–Forchheimer formulation, while the density and temperature are described by convection-dominated diffusion equations, which are treated via the characteristic method. Theoretical analyses are rigorously developed for pressure, velocity, density, temperature, and auxiliary flux across non-uniform grids. Several numerical experiments are carried out to illustrate the merits of our method by comparing numerical results to analytical solutions.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical discretization of a Darcy–Forchheimer flow with variable density and heat transfer\",\"authors\":\"Jian Huang ,&nbsp;Zhen Yue ,&nbsp;Jing Zhang ,&nbsp;Kai Fu ,&nbsp;Xilin Feng\",\"doi\":\"10.1016/j.cam.2024.116252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study a heat transfer scenario in Darcy–Forchheimer porous media with variable density. The block-centered finite difference method is applied to discretize the non-isothermal flow equations governing the system. Specifically, the pressure field is modeled using the nonlinear Darcy–Forchheimer formulation, while the density and temperature are described by convection-dominated diffusion equations, which are treated via the characteristic method. Theoretical analyses are rigorously developed for pressure, velocity, density, temperature, and auxiliary flux across non-uniform grids. Several numerical experiments are carried out to illustrate the merits of our method by comparing numerical results to analytical solutions.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042724005016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724005016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了密度可变的达西-福克海默(Darcy-Forchheimer)多孔介质中的传热情况。采用块中心有限差分法来离散约束该系统的非等温流动方程。具体来说,压力场采用非线性达西-福克海默公式建模,而密度和温度则由对流主导的扩散方程描述,并通过特征法进行处理。对非均匀网格上的压力、速度、密度、温度和辅助通量进行了严格的理论分析。通过将数值结果与分析解进行比较,进行了几次数值实验,以说明我们的方法的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical discretization of a Darcy–Forchheimer flow with variable density and heat transfer

In this paper, we study a heat transfer scenario in Darcy–Forchheimer porous media with variable density. The block-centered finite difference method is applied to discretize the non-isothermal flow equations governing the system. Specifically, the pressure field is modeled using the nonlinear Darcy–Forchheimer formulation, while the density and temperature are described by convection-dominated diffusion equations, which are treated via the characteristic method. Theoretical analyses are rigorously developed for pressure, velocity, density, temperature, and auxiliary flux across non-uniform grids. Several numerical experiments are carried out to illustrate the merits of our method by comparing numerical results to analytical solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信