Rn 中的精炼一阶扩展公式:应用于插值和有限元误差估计

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Joël Chaskalovic , Franck Assous
{"title":"Rn 中的精炼一阶扩展公式:应用于插值和有限元误差估计","authors":"Joël Chaskalovic ,&nbsp;Franck Assous","doi":"10.1016/j.cam.2024.116274","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this paper is to derive a refined first-order expansion formula in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, the goal being to get an optimal reduced remainder, compared to the one obtained by usual Taylor’s formula. For a given function, the formula we derived is obtained by introducing a linear combination of the first derivatives, computed at <span><math><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></math></span> equally spaced points. We show how this formula can be applied to two important applications: the interpolation error and the finite elements error estimates. In both cases, we illustrate under which conditions a significant improvement of the errors can be obtained, namely how the use of the refined expansion can reduce the upper bound of error estimates.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A refined first-order expansion formula in Rn: Application to interpolation and finite element error estimates\",\"authors\":\"Joël Chaskalovic ,&nbsp;Franck Assous\",\"doi\":\"10.1016/j.cam.2024.116274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aim of this paper is to derive a refined first-order expansion formula in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>, the goal being to get an optimal reduced remainder, compared to the one obtained by usual Taylor’s formula. For a given function, the formula we derived is obtained by introducing a linear combination of the first derivatives, computed at <span><math><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></math></span> equally spaced points. We show how this formula can be applied to two important applications: the interpolation error and the finite elements error estimates. In both cases, we illustrate under which conditions a significant improvement of the errors can be obtained, namely how the use of the refined expansion can reduce the upper bound of error estimates.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042724005235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724005235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在推导出 Rn 中的精炼一阶展开公式,目的是获得与通常的泰勒公式相比最优的缩减余数。对于给定函数,我们通过引入在 n+1 个等间距点计算的一阶导数的线性组合,得到了推导出的公式。我们展示了如何将此公式应用于两个重要的应用领域:插值误差和有限元误差估计。在这两种情况下,我们都说明了在哪些条件下可以显著改善误差,即使用细化展开如何降低误差估计的上限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A refined first-order expansion formula in Rn: Application to interpolation and finite element error estimates

The aim of this paper is to derive a refined first-order expansion formula in Rn, the goal being to get an optimal reduced remainder, compared to the one obtained by usual Taylor’s formula. For a given function, the formula we derived is obtained by introducing a linear combination of the first derivatives, computed at n+1 equally spaced points. We show how this formula can be applied to two important applications: the interpolation error and the finite elements error estimates. In both cases, we illustrate under which conditions a significant improvement of the errors can be obtained, namely how the use of the refined expansion can reduce the upper bound of error estimates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信