{"title":"气候协变量选择影响当前和未来气候条件下的 MaxEnt 模型预测和预测精度","authors":"Clarke J.M. van Steenderen, Guy F. Sutton","doi":"10.1016/j.ecolmodel.2024.110872","DOIUrl":null,"url":null,"abstract":"<div><p>The performance and transferability of species distribution models (SDMs) depends on a number of ecological, biological, and methodological factors. There is a growing body of literature that explores how the choice of climate covariate combinations and model parameters can affect predictive performance, but relatively few that delve into covariate reduction methods and the optimisation of model parameters, and the resulting spatial and temporal transferability of those models. The present work used the citrus pest, <em>Diaphorina citri</em> Kuwayama (Hemiptera: Psyllidae), to illustrate how MaxEnt models trained on the insect’s native range in Asia varied in their predictions of climatic suitability across the introduced range when eight different covariate reduction methods were applied during model building. Additionally, it showed how model sensitivity varied across these different covariate combinations using three sets of independently validated occurrence points in the invaded range of the psyllid. Climatically suitable areas for <em>D. citri</em> differed by as much as two-fold between the best and worst-performing models in selected areas. Great care should be taken in the selection of the highest-performing predictor combinations and model parameter settings for SDMs, particularly in the case of invasive species where the assumption of environmental equilibrium is likely violated in the introduced range. Understanding how the predictive ability of SDMs can be influenced by the methodological choices made during the model building phase is vital to ensuring that ecological and invasion management programmes do not over- or underestimate climatic suitability and subsequent invasion risk.</p></div>","PeriodicalId":51043,"journal":{"name":"Ecological Modelling","volume":"498 ","pages":"Article 110872"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304380024002606/pdfft?md5=77eb91f07c3520753660b793352f63e9&pid=1-s2.0-S0304380024002606-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Climate covariate selection influences MaxEnt model predictions and predictive accuracy under current and future climates\",\"authors\":\"Clarke J.M. van Steenderen, Guy F. Sutton\",\"doi\":\"10.1016/j.ecolmodel.2024.110872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The performance and transferability of species distribution models (SDMs) depends on a number of ecological, biological, and methodological factors. There is a growing body of literature that explores how the choice of climate covariate combinations and model parameters can affect predictive performance, but relatively few that delve into covariate reduction methods and the optimisation of model parameters, and the resulting spatial and temporal transferability of those models. The present work used the citrus pest, <em>Diaphorina citri</em> Kuwayama (Hemiptera: Psyllidae), to illustrate how MaxEnt models trained on the insect’s native range in Asia varied in their predictions of climatic suitability across the introduced range when eight different covariate reduction methods were applied during model building. Additionally, it showed how model sensitivity varied across these different covariate combinations using three sets of independently validated occurrence points in the invaded range of the psyllid. Climatically suitable areas for <em>D. citri</em> differed by as much as two-fold between the best and worst-performing models in selected areas. Great care should be taken in the selection of the highest-performing predictor combinations and model parameter settings for SDMs, particularly in the case of invasive species where the assumption of environmental equilibrium is likely violated in the introduced range. Understanding how the predictive ability of SDMs can be influenced by the methodological choices made during the model building phase is vital to ensuring that ecological and invasion management programmes do not over- or underestimate climatic suitability and subsequent invasion risk.</p></div>\",\"PeriodicalId\":51043,\"journal\":{\"name\":\"Ecological Modelling\",\"volume\":\"498 \",\"pages\":\"Article 110872\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0304380024002606/pdfft?md5=77eb91f07c3520753660b793352f63e9&pid=1-s2.0-S0304380024002606-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Modelling\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304380024002606\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Modelling","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304380024002606","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Climate covariate selection influences MaxEnt model predictions and predictive accuracy under current and future climates
The performance and transferability of species distribution models (SDMs) depends on a number of ecological, biological, and methodological factors. There is a growing body of literature that explores how the choice of climate covariate combinations and model parameters can affect predictive performance, but relatively few that delve into covariate reduction methods and the optimisation of model parameters, and the resulting spatial and temporal transferability of those models. The present work used the citrus pest, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), to illustrate how MaxEnt models trained on the insect’s native range in Asia varied in their predictions of climatic suitability across the introduced range when eight different covariate reduction methods were applied during model building. Additionally, it showed how model sensitivity varied across these different covariate combinations using three sets of independently validated occurrence points in the invaded range of the psyllid. Climatically suitable areas for D. citri differed by as much as two-fold between the best and worst-performing models in selected areas. Great care should be taken in the selection of the highest-performing predictor combinations and model parameter settings for SDMs, particularly in the case of invasive species where the assumption of environmental equilibrium is likely violated in the introduced range. Understanding how the predictive ability of SDMs can be influenced by the methodological choices made during the model building phase is vital to ensuring that ecological and invasion management programmes do not over- or underestimate climatic suitability and subsequent invasion risk.
期刊介绍:
The journal is concerned with the use of mathematical models and systems analysis for the description of ecological processes and for the sustainable management of resources. Human activity and well-being are dependent on and integrated with the functioning of ecosystems and the services they provide. We aim to understand these basic ecosystem functions using mathematical and conceptual modelling, systems analysis, thermodynamics, computer simulations, and ecological theory. This leads to a preference for process-based models embedded in theory with explicit causative agents as opposed to strictly statistical or correlative descriptions. These modelling methods can be applied to a wide spectrum of issues ranging from basic ecology to human ecology to socio-ecological systems. The journal welcomes research articles, short communications, review articles, letters to the editor, book reviews, and other communications. The journal also supports the activities of the [International Society of Ecological Modelling (ISEM)](http://www.isemna.org/).