热催化氨合成和分解的最新进展

IF 9.3 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Juliette C. Verschoor, Petra E. de Jongh, Peter Ngene
{"title":"热催化氨合成和分解的最新进展","authors":"Juliette C. Verschoor,&nbsp;Petra E. de Jongh,&nbsp;Peter Ngene","doi":"10.1016/j.cogsc.2024.100965","DOIUrl":null,"url":null,"abstract":"<div><p>Ammonia (NH<sub>3</sub>) is widely used in the production of vital chemicals such as synthetic fertilizers and nitric acid. It has recently attracted great attention as an energy carrier due to its high hydrogen content (17 wt.% H), ease of transportation, and stability over time. However, for ammonia to fulfil this promise, a more efficient and sustainable method for its synthesis and decomposition must be developed. Significant scientific efforts have been devoted to achieving this via an in-depth understanding of the reaction mechanisms. This mini-review discusses the most relevant developments in heterogenous catalysts for ammonia synthesis and decomposition over the past two years, which has centered on structural and electronic modifications, single atom catalysis, and the use of dual/multiple catalytic sites for N<sub>2</sub> and H<sub>2</sub> activation to overcome the scaling relationship, and thereby achieve moderate reaction conditions.</p></div>","PeriodicalId":54228,"journal":{"name":"Current Opinion in Green and Sustainable Chemistry","volume":"50 ","pages":"Article 100965"},"PeriodicalIF":9.3000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452223624000865/pdfft?md5=fbcca5ce2b86fb352e823f3cd90f7d5c&pid=1-s2.0-S2452223624000865-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Recent advances in thermocatalytic ammonia synthesis and decomposition\",\"authors\":\"Juliette C. Verschoor,&nbsp;Petra E. de Jongh,&nbsp;Peter Ngene\",\"doi\":\"10.1016/j.cogsc.2024.100965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ammonia (NH<sub>3</sub>) is widely used in the production of vital chemicals such as synthetic fertilizers and nitric acid. It has recently attracted great attention as an energy carrier due to its high hydrogen content (17 wt.% H), ease of transportation, and stability over time. However, for ammonia to fulfil this promise, a more efficient and sustainable method for its synthesis and decomposition must be developed. Significant scientific efforts have been devoted to achieving this via an in-depth understanding of the reaction mechanisms. This mini-review discusses the most relevant developments in heterogenous catalysts for ammonia synthesis and decomposition over the past two years, which has centered on structural and electronic modifications, single atom catalysis, and the use of dual/multiple catalytic sites for N<sub>2</sub> and H<sub>2</sub> activation to overcome the scaling relationship, and thereby achieve moderate reaction conditions.</p></div>\",\"PeriodicalId\":54228,\"journal\":{\"name\":\"Current Opinion in Green and Sustainable Chemistry\",\"volume\":\"50 \",\"pages\":\"Article 100965\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2452223624000865/pdfft?md5=fbcca5ce2b86fb352e823f3cd90f7d5c&pid=1-s2.0-S2452223624000865-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Green and Sustainable Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452223624000865\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Green and Sustainable Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452223624000865","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

氨(NH3)被广泛用于合成肥料和硝酸等重要化学品的生产。由于其氢含量高(17 wt.% H)、易于运输且长期稳定,氨作为一种能源载体近来备受关注。然而,要实现氨的这一前景,必须开发出一种更高效、更可持续的合成和分解氨的方法。为了实现这一目标,科研人员付出了巨大努力,对反应机理进行了深入了解。本微型综述讨论了过去两年中用于氨合成和分解的异质催化剂方面最相关的发展,这些发展主要集中在结构和电子改性、单原子催化以及使用双/多催化位点激活 N2 和 H2 以克服缩放关系,从而实现适度的反应条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent advances in thermocatalytic ammonia synthesis and decomposition

Ammonia (NH3) is widely used in the production of vital chemicals such as synthetic fertilizers and nitric acid. It has recently attracted great attention as an energy carrier due to its high hydrogen content (17 wt.% H), ease of transportation, and stability over time. However, for ammonia to fulfil this promise, a more efficient and sustainable method for its synthesis and decomposition must be developed. Significant scientific efforts have been devoted to achieving this via an in-depth understanding of the reaction mechanisms. This mini-review discusses the most relevant developments in heterogenous catalysts for ammonia synthesis and decomposition over the past two years, which has centered on structural and electronic modifications, single atom catalysis, and the use of dual/multiple catalytic sites for N2 and H2 activation to overcome the scaling relationship, and thereby achieve moderate reaction conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.00
自引率
2.20%
发文量
140
审稿时长
103 days
期刊介绍: The Current Opinion journals address the challenge specialists face in keeping up with the expanding information in their fields. In Current Opinion in Green and Sustainable Chemistry, experts present views on recent advances in a clear and readable form. The journal also provides evaluations of the most noteworthy papers, annotated by experts, from the extensive pool of original publications in Green and Sustainable Chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信