Gyungha Kim , Sangmin Park , Youngoh Kim , Joonmyung Choi , Jungpil Kim , Dae Up Kim
{"title":"确定增强氧功能化废碳纤维与聚酰胺树脂之间界面力的机理并进行实验实施","authors":"Gyungha Kim , Sangmin Park , Youngoh Kim , Joonmyung Choi , Jungpil Kim , Dae Up Kim","doi":"10.1016/j.polymertesting.2024.108564","DOIUrl":null,"url":null,"abstract":"<div><p>To recycle waste carbon fibers (CFs) and utilize them as a composite material with polyamide–6 (PA–6), the oxidation of the carbon surface is crucial for enhancing its bonding with PA–6 without damaging the waste CFs. However, the most effective oxygen-containing functional group (O–group) was hitherto unknown. In this study, computational simulations demonstrated that incorporating O–groups enhanced the interfacial bonding force via hydrogen bonding between the oxygen of the O–groups and hydrogen (N–<strong><u>H</u></strong>) of PA–6. Among various O–groups, the bonding of lactone groups to PA–6 was energetically most favorable, corroborated by different oxidation treatments such as acid, heat, and plasma. As the reaction time or temperature increased, the amount of O–groups, such as lactones, increased. Regardless of the oxidation treatment type, an increase in the amount of O–groups increased the interfacial force, and this tendency was predominantly observed in lactone groups. However, excessive surface oxidation introduced defects on the surface of CFs, which reduced the interfacial force. The modification of waste CFs by identifying the proposed mechanisms lays the groundwork for synthesizing high-quality waste CF composites.</p></div>","PeriodicalId":20628,"journal":{"name":"Polymer Testing","volume":"139 ","pages":"Article 108564"},"PeriodicalIF":5.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0142941824002411/pdfft?md5=aed0978fca95e4f699d47203e19ab62b&pid=1-s2.0-S0142941824002411-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Identification of mechanisms and experimental implementation for enhancing the interfacial force between oxygen functionalized waste carbon fibers and polyamide resin\",\"authors\":\"Gyungha Kim , Sangmin Park , Youngoh Kim , Joonmyung Choi , Jungpil Kim , Dae Up Kim\",\"doi\":\"10.1016/j.polymertesting.2024.108564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To recycle waste carbon fibers (CFs) and utilize them as a composite material with polyamide–6 (PA–6), the oxidation of the carbon surface is crucial for enhancing its bonding with PA–6 without damaging the waste CFs. However, the most effective oxygen-containing functional group (O–group) was hitherto unknown. In this study, computational simulations demonstrated that incorporating O–groups enhanced the interfacial bonding force via hydrogen bonding between the oxygen of the O–groups and hydrogen (N–<strong><u>H</u></strong>) of PA–6. Among various O–groups, the bonding of lactone groups to PA–6 was energetically most favorable, corroborated by different oxidation treatments such as acid, heat, and plasma. As the reaction time or temperature increased, the amount of O–groups, such as lactones, increased. Regardless of the oxidation treatment type, an increase in the amount of O–groups increased the interfacial force, and this tendency was predominantly observed in lactone groups. However, excessive surface oxidation introduced defects on the surface of CFs, which reduced the interfacial force. The modification of waste CFs by identifying the proposed mechanisms lays the groundwork for synthesizing high-quality waste CF composites.</p></div>\",\"PeriodicalId\":20628,\"journal\":{\"name\":\"Polymer Testing\",\"volume\":\"139 \",\"pages\":\"Article 108564\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0142941824002411/pdfft?md5=aed0978fca95e4f699d47203e19ab62b&pid=1-s2.0-S0142941824002411-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Testing\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142941824002411\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Testing","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142941824002411","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
摘要
要回收利用废旧碳纤维(CF)并将其用作聚酰胺-6(PA-6)的复合材料,碳表面的氧化对于在不损坏废旧碳纤维的情况下增强其与 PA-6 的结合至关重要。然而,迄今为止,最有效的含氧官能团(O-基团)尚不为人所知。在本研究中,计算模拟证明,加入 O 基团可通过 O 基团的氧与 PA-6 的氢(N-H)之间的氢键增强界面结合力。在各种 O 基团中,内酯基团与 PA-6 的结合在能量上最为有利,这一点在不同的氧化处理(如酸、热和等离子体)中得到了证实。随着反应时间或温度的增加,内酯等 O-基团的数量也随之增加。无论氧化处理类型如何,O-基团数量的增加都会增加界面力,这种趋势主要体现在内酯基团上。然而,过度的表面氧化会在 CF 表面造成缺陷,从而降低界面力。通过确定所提出的机制对废弃 CF 进行改性,为合成高质量的废弃 CF 复合材料奠定了基础。
Identification of mechanisms and experimental implementation for enhancing the interfacial force between oxygen functionalized waste carbon fibers and polyamide resin
To recycle waste carbon fibers (CFs) and utilize them as a composite material with polyamide–6 (PA–6), the oxidation of the carbon surface is crucial for enhancing its bonding with PA–6 without damaging the waste CFs. However, the most effective oxygen-containing functional group (O–group) was hitherto unknown. In this study, computational simulations demonstrated that incorporating O–groups enhanced the interfacial bonding force via hydrogen bonding between the oxygen of the O–groups and hydrogen (N–H) of PA–6. Among various O–groups, the bonding of lactone groups to PA–6 was energetically most favorable, corroborated by different oxidation treatments such as acid, heat, and plasma. As the reaction time or temperature increased, the amount of O–groups, such as lactones, increased. Regardless of the oxidation treatment type, an increase in the amount of O–groups increased the interfacial force, and this tendency was predominantly observed in lactone groups. However, excessive surface oxidation introduced defects on the surface of CFs, which reduced the interfacial force. The modification of waste CFs by identifying the proposed mechanisms lays the groundwork for synthesizing high-quality waste CF composites.
期刊介绍:
Polymer Testing focuses on the testing, analysis and characterization of polymer materials, including both synthetic and natural or biobased polymers. Novel testing methods and the testing of novel polymeric materials in bulk, solution and dispersion is covered. In addition, we welcome the submission of the testing of polymeric materials for a wide range of applications and industrial products as well as nanoscale characterization.
The scope includes but is not limited to the following main topics:
Novel testing methods and Chemical analysis
• mechanical, thermal, electrical, chemical, imaging, spectroscopy, scattering and rheology
Physical properties and behaviour of novel polymer systems
• nanoscale properties, morphology, transport properties
Degradation and recycling of polymeric materials when combined with novel testing or characterization methods
• degradation, biodegradation, ageing and fire retardancy
Modelling and Simulation work will be only considered when it is linked to new or previously published experimental results.