病媒识别工具 IDX 中早期部署算法的蚊虫物种识别准确性

IF 2.1 3区 医学 Q2 PARASITOLOGY
Khushi Anil Gupta, Vasiliki N. Ikonomidou, Margaret Glancey, Roy Faiman, Sameerah Talafha, Tristan Ford, Thomas Jenkins, Autumn Goodwin
{"title":"病媒识别工具 IDX 中早期部署算法的蚊虫物种识别准确性","authors":"Khushi Anil Gupta,&nbsp;Vasiliki N. Ikonomidou,&nbsp;Margaret Glancey,&nbsp;Roy Faiman,&nbsp;Sameerah Talafha,&nbsp;Tristan Ford,&nbsp;Thomas Jenkins,&nbsp;Autumn Goodwin","doi":"10.1016/j.actatropica.2024.107392","DOIUrl":null,"url":null,"abstract":"<div><p>Mosquito-borne diseases continue to pose a great threat to global public health systems due to increased insecticide resistance and climate change. Accurate vector identification is crucial for effective control, yet it presents significant challenges. IDX - an automated computer vision-based device capable of capturing mosquito images and outputting mosquito species ID has been deployed globally resulting in algorithms currently capable of identifying 53 mosquito species. In this study, we evaluate deployed performance of the IDX mosquito species identification algorithms using data from partners in the Southeastern United States (SE US) and Papua New Guinea (PNG) in 2023 and 2024. This preliminary assessment indicates continued improvement of the IDX mosquito species identification algorithms over the study period for individual species as well as average regional accuracy with macro average recall improving from 55.3 % [Confidence Interval (CI) 48.9, 61.7] to 80.2 % [CI 77.3, 84.9] for SE US, and 84.1 % [CI 75.1, 93.1] to 93.6 % [CI 91.6, 95.6] for PNG using a CI of 90 %. This study underscores the importance of algorithm refinement and dataset expansion covering more species and regions to enhance identification systems thereby reducing the workload for human experts, addressing taxonomic expertise gaps, and improving vector control efforts.</p></div>","PeriodicalId":7240,"journal":{"name":"Acta tropica","volume":"260 ","pages":"Article 107392"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0001706X24002742/pdfft?md5=a93e9a813005f97811f7573a5f33e1bd&pid=1-s2.0-S0001706X24002742-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Mosquito species identification accuracy of early deployed algorithms in IDX, A vector identification tool\",\"authors\":\"Khushi Anil Gupta,&nbsp;Vasiliki N. Ikonomidou,&nbsp;Margaret Glancey,&nbsp;Roy Faiman,&nbsp;Sameerah Talafha,&nbsp;Tristan Ford,&nbsp;Thomas Jenkins,&nbsp;Autumn Goodwin\",\"doi\":\"10.1016/j.actatropica.2024.107392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mosquito-borne diseases continue to pose a great threat to global public health systems due to increased insecticide resistance and climate change. Accurate vector identification is crucial for effective control, yet it presents significant challenges. IDX - an automated computer vision-based device capable of capturing mosquito images and outputting mosquito species ID has been deployed globally resulting in algorithms currently capable of identifying 53 mosquito species. In this study, we evaluate deployed performance of the IDX mosquito species identification algorithms using data from partners in the Southeastern United States (SE US) and Papua New Guinea (PNG) in 2023 and 2024. This preliminary assessment indicates continued improvement of the IDX mosquito species identification algorithms over the study period for individual species as well as average regional accuracy with macro average recall improving from 55.3 % [Confidence Interval (CI) 48.9, 61.7] to 80.2 % [CI 77.3, 84.9] for SE US, and 84.1 % [CI 75.1, 93.1] to 93.6 % [CI 91.6, 95.6] for PNG using a CI of 90 %. This study underscores the importance of algorithm refinement and dataset expansion covering more species and regions to enhance identification systems thereby reducing the workload for human experts, addressing taxonomic expertise gaps, and improving vector control efforts.</p></div>\",\"PeriodicalId\":7240,\"journal\":{\"name\":\"Acta tropica\",\"volume\":\"260 \",\"pages\":\"Article 107392\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0001706X24002742/pdfft?md5=a93e9a813005f97811f7573a5f33e1bd&pid=1-s2.0-S0001706X24002742-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta tropica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001706X24002742\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PARASITOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta tropica","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001706X24002742","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

由于杀虫剂抗药性的增加和气候变化,蚊子传播的疾病继续对全球公共卫生系统构成巨大威胁。准确识别病媒对有效控制至关重要,但也面临着巨大挑战。IDX--一种基于计算机视觉的自动设备,能够捕捉蚊子图像并输出蚊子物种标识,目前已在全球部署,其算法能够识别 53 种蚊子物种。在这项研究中,我们利用美国东南部(SE US)和巴布亚新几内亚(PNG)合作伙伴在 2023 年和 2024 年提供的数据,对 IDX 蚊子物种识别算法的部署性能进行了评估。初步评估表明,在研究期间,IDX蚊子物种识别算法在单个物种和平均区域准确性方面都有持续改进,美国东南部的宏观平均召回率从55.3%[置信区间(CI)48.9,61.7]提高到80.2%[CI 77.3,84.9],巴布亚新几内亚的宏观平均召回率从84.1%[CI 75.1,93.1]提高到93.6%[CI 91.6,95.6],置信区间(CI)为90%。这项研究强调了改进算法和扩大数据集的重要性,以覆盖更多的物种和地区,从而加强识别系统,减少人类专家的工作量,解决分类学专业知识的差距,并改善病媒控制工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mosquito species identification accuracy of early deployed algorithms in IDX, A vector identification tool

Mosquito species identification accuracy of early deployed algorithms in IDX, A vector identification tool

Mosquito-borne diseases continue to pose a great threat to global public health systems due to increased insecticide resistance and climate change. Accurate vector identification is crucial for effective control, yet it presents significant challenges. IDX - an automated computer vision-based device capable of capturing mosquito images and outputting mosquito species ID has been deployed globally resulting in algorithms currently capable of identifying 53 mosquito species. In this study, we evaluate deployed performance of the IDX mosquito species identification algorithms using data from partners in the Southeastern United States (SE US) and Papua New Guinea (PNG) in 2023 and 2024. This preliminary assessment indicates continued improvement of the IDX mosquito species identification algorithms over the study period for individual species as well as average regional accuracy with macro average recall improving from 55.3 % [Confidence Interval (CI) 48.9, 61.7] to 80.2 % [CI 77.3, 84.9] for SE US, and 84.1 % [CI 75.1, 93.1] to 93.6 % [CI 91.6, 95.6] for PNG using a CI of 90 %. This study underscores the importance of algorithm refinement and dataset expansion covering more species and regions to enhance identification systems thereby reducing the workload for human experts, addressing taxonomic expertise gaps, and improving vector control efforts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta tropica
Acta tropica 医学-寄生虫学
CiteScore
5.40
自引率
11.10%
发文量
383
审稿时长
37 days
期刊介绍: Acta Tropica, is an international journal on infectious diseases that covers public health sciences and biomedical research with particular emphasis on topics relevant to human and animal health in the tropics and the subtropics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信