Yumeng Ze , Yifan Liu , Bo Wang , Huimin Yin , Chuanhong Jin , Zhiyong Zhang
{"title":"未来集成电路应用中的碳纳米管材料","authors":"Yumeng Ze , Yifan Liu , Bo Wang , Huimin Yin , Chuanhong Jin , Zhiyong Zhang","doi":"10.1016/j.mattod.2024.07.008","DOIUrl":null,"url":null,"abstract":"<div><p>Aligned carbon nanotubes (A-CNTs) have been demonstrated to be promising materials for constructing advanced complementary metal–oxide–semiconductor (CMOS) field-effect transistors (FETs) for future integrated circuits (ICs). However, the requirements of A-CNT materials from the perspective of IC applications, such as the distributions of length, alignment, diameter and density of CNTs, have not been explicitly researched or mentioned before. In this article, we review the progress on CNT electronics and electronic-grade materials and establish material criteria for A-CNTs applicable to advanced electronics according to the developing roadmap of CNT-based ICs. Specifically, electrical performance predictions for A-CNT CMOS FETs at various technology nodes are built based on a theoretical model and experimental results, and then, the criteria for ideal A-CNTs are outlined by evaluating the energy-delay product (EDP) advantage of CNT FETs over similar node commercial silicon (Si)-based CMOS transistors. The fine requirements for A-CNT materials are estimated for 90 nm, 22 nm, 7 nm, and 3 nm node CNT CMOS FETs, which present significant advantages in terms of energy efficiency over Si CMOS transistors. The criteria will guide the development of CNT materials for future ICs and provide a comprehensive assessment of the opportunities and challenges in CNT electronics.</p></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"79 ","pages":"Pages 97-111"},"PeriodicalIF":21.1000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon nanotube materials for future integrated circuit applications\",\"authors\":\"Yumeng Ze , Yifan Liu , Bo Wang , Huimin Yin , Chuanhong Jin , Zhiyong Zhang\",\"doi\":\"10.1016/j.mattod.2024.07.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aligned carbon nanotubes (A-CNTs) have been demonstrated to be promising materials for constructing advanced complementary metal–oxide–semiconductor (CMOS) field-effect transistors (FETs) for future integrated circuits (ICs). However, the requirements of A-CNT materials from the perspective of IC applications, such as the distributions of length, alignment, diameter and density of CNTs, have not been explicitly researched or mentioned before. In this article, we review the progress on CNT electronics and electronic-grade materials and establish material criteria for A-CNTs applicable to advanced electronics according to the developing roadmap of CNT-based ICs. Specifically, electrical performance predictions for A-CNT CMOS FETs at various technology nodes are built based on a theoretical model and experimental results, and then, the criteria for ideal A-CNTs are outlined by evaluating the energy-delay product (EDP) advantage of CNT FETs over similar node commercial silicon (Si)-based CMOS transistors. The fine requirements for A-CNT materials are estimated for 90 nm, 22 nm, 7 nm, and 3 nm node CNT CMOS FETs, which present significant advantages in terms of energy efficiency over Si CMOS transistors. The criteria will guide the development of CNT materials for future ICs and provide a comprehensive assessment of the opportunities and challenges in CNT electronics.</p></div>\",\"PeriodicalId\":387,\"journal\":{\"name\":\"Materials Today\",\"volume\":\"79 \",\"pages\":\"Pages 97-111\"},\"PeriodicalIF\":21.1000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369702124001482\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702124001482","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Carbon nanotube materials for future integrated circuit applications
Aligned carbon nanotubes (A-CNTs) have been demonstrated to be promising materials for constructing advanced complementary metal–oxide–semiconductor (CMOS) field-effect transistors (FETs) for future integrated circuits (ICs). However, the requirements of A-CNT materials from the perspective of IC applications, such as the distributions of length, alignment, diameter and density of CNTs, have not been explicitly researched or mentioned before. In this article, we review the progress on CNT electronics and electronic-grade materials and establish material criteria for A-CNTs applicable to advanced electronics according to the developing roadmap of CNT-based ICs. Specifically, electrical performance predictions for A-CNT CMOS FETs at various technology nodes are built based on a theoretical model and experimental results, and then, the criteria for ideal A-CNTs are outlined by evaluating the energy-delay product (EDP) advantage of CNT FETs over similar node commercial silicon (Si)-based CMOS transistors. The fine requirements for A-CNT materials are estimated for 90 nm, 22 nm, 7 nm, and 3 nm node CNT CMOS FETs, which present significant advantages in terms of energy efficiency over Si CMOS transistors. The criteria will guide the development of CNT materials for future ICs and provide a comprehensive assessment of the opportunities and challenges in CNT electronics.
期刊介绍:
Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field.
We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.