Mao Guo , Lin Yang , Lei Zhang , Feixue Shen , Michael E. Meadows , Chenghu Zhou
{"title":"水文、植被和土壤特性是沿海湿地土壤有机碳的主要驱动因素:高分辨率研究","authors":"Mao Guo , Lin Yang , Lei Zhang , Feixue Shen , Michael E. Meadows , Chenghu Zhou","doi":"10.1016/j.ese.2024.100482","DOIUrl":null,"url":null,"abstract":"<div><p>Coastal wetlands are important blue carbon ecosystems that play a significant role in the global carbon cycle. However, there is insufficient understanding of the variations in soil organic carbon (SOC) stocks and the mechanisms driving these ecosystems. Here we analyze a comprehensive multi-source dataset of SOC in topsoil (0–20 cm) and subsoil (20–100 cm) across 31 coastal wetlands in China to identify the factors influencing their distribution. Structural equation models (SEMs) reveal that hydrology has the greatest overall effect on SOC in both soil layers, followed by vegetation, soil properties, and climate. Notably, the mechanisms driving SOC density differ between the two layers. In topsoil, vegetation type and productivity directly impact carbon density as primary sources of carbon input, while hydrology, primarily through seawater salinity, exerts the largest indirect influence. Conversely, in subsoil, hydrology has the strongest direct effect on SOC, with seawater salinity also influencing SOC indirectly through soil and vegetation mediation. Soil properties, particularly pH, negatively affect carbon accumulation, while climate influences SOC indirectly via its effects on vegetation and soil, with a diminishing impact at greater depths. Using Random Forest, we generate high-resolution maps (90 m × 90 m) of topsoil and subsoil carbon density (<em>R</em><sup>2</sup> of 0.53 and 0.62, respectively), providing the most detailed spatial distribution of SOC in Chinese coastal wetlands to date. Based on these maps, we estimate that SOC storage to a depth of 1 m in Chinese coastal wetlands totals 74.58 ± 3.85 Tg C, with subsoil carbon storage being 2.5 times greater than that in topsoil. These findings provide important insights into mechanism on driving spatial pattern of blue carbon and effective ways to assess carbon status on a national scale, thus contributing to the advancement of global blue carbon monitoring and management.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"23 ","pages":"Article 100482"},"PeriodicalIF":14.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000966/pdfft?md5=776b163f662f0e025c275fc2b9592572&pid=1-s2.0-S2666498424000966-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Hydrology, vegetation, and soil properties as key drivers of soil organic carbon in coastal wetlands: A high-resolution study\",\"authors\":\"Mao Guo , Lin Yang , Lei Zhang , Feixue Shen , Michael E. Meadows , Chenghu Zhou\",\"doi\":\"10.1016/j.ese.2024.100482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Coastal wetlands are important blue carbon ecosystems that play a significant role in the global carbon cycle. However, there is insufficient understanding of the variations in soil organic carbon (SOC) stocks and the mechanisms driving these ecosystems. Here we analyze a comprehensive multi-source dataset of SOC in topsoil (0–20 cm) and subsoil (20–100 cm) across 31 coastal wetlands in China to identify the factors influencing their distribution. Structural equation models (SEMs) reveal that hydrology has the greatest overall effect on SOC in both soil layers, followed by vegetation, soil properties, and climate. Notably, the mechanisms driving SOC density differ between the two layers. In topsoil, vegetation type and productivity directly impact carbon density as primary sources of carbon input, while hydrology, primarily through seawater salinity, exerts the largest indirect influence. Conversely, in subsoil, hydrology has the strongest direct effect on SOC, with seawater salinity also influencing SOC indirectly through soil and vegetation mediation. Soil properties, particularly pH, negatively affect carbon accumulation, while climate influences SOC indirectly via its effects on vegetation and soil, with a diminishing impact at greater depths. Using Random Forest, we generate high-resolution maps (90 m × 90 m) of topsoil and subsoil carbon density (<em>R</em><sup>2</sup> of 0.53 and 0.62, respectively), providing the most detailed spatial distribution of SOC in Chinese coastal wetlands to date. Based on these maps, we estimate that SOC storage to a depth of 1 m in Chinese coastal wetlands totals 74.58 ± 3.85 Tg C, with subsoil carbon storage being 2.5 times greater than that in topsoil. These findings provide important insights into mechanism on driving spatial pattern of blue carbon and effective ways to assess carbon status on a national scale, thus contributing to the advancement of global blue carbon monitoring and management.</p></div>\",\"PeriodicalId\":34434,\"journal\":{\"name\":\"Environmental Science and Ecotechnology\",\"volume\":\"23 \",\"pages\":\"Article 100482\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666498424000966/pdfft?md5=776b163f662f0e025c275fc2b9592572&pid=1-s2.0-S2666498424000966-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science and Ecotechnology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666498424000966\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Ecotechnology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666498424000966","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Hydrology, vegetation, and soil properties as key drivers of soil organic carbon in coastal wetlands: A high-resolution study
Coastal wetlands are important blue carbon ecosystems that play a significant role in the global carbon cycle. However, there is insufficient understanding of the variations in soil organic carbon (SOC) stocks and the mechanisms driving these ecosystems. Here we analyze a comprehensive multi-source dataset of SOC in topsoil (0–20 cm) and subsoil (20–100 cm) across 31 coastal wetlands in China to identify the factors influencing their distribution. Structural equation models (SEMs) reveal that hydrology has the greatest overall effect on SOC in both soil layers, followed by vegetation, soil properties, and climate. Notably, the mechanisms driving SOC density differ between the two layers. In topsoil, vegetation type and productivity directly impact carbon density as primary sources of carbon input, while hydrology, primarily through seawater salinity, exerts the largest indirect influence. Conversely, in subsoil, hydrology has the strongest direct effect on SOC, with seawater salinity also influencing SOC indirectly through soil and vegetation mediation. Soil properties, particularly pH, negatively affect carbon accumulation, while climate influences SOC indirectly via its effects on vegetation and soil, with a diminishing impact at greater depths. Using Random Forest, we generate high-resolution maps (90 m × 90 m) of topsoil and subsoil carbon density (R2 of 0.53 and 0.62, respectively), providing the most detailed spatial distribution of SOC in Chinese coastal wetlands to date. Based on these maps, we estimate that SOC storage to a depth of 1 m in Chinese coastal wetlands totals 74.58 ± 3.85 Tg C, with subsoil carbon storage being 2.5 times greater than that in topsoil. These findings provide important insights into mechanism on driving spatial pattern of blue carbon and effective ways to assess carbon status on a national scale, thus contributing to the advancement of global blue carbon monitoring and management.
期刊介绍:
Environmental Science & Ecotechnology (ESE) is an international, open-access journal publishing original research in environmental science, engineering, ecotechnology, and related fields. Authors publishing in ESE can immediately, permanently, and freely share their work. They have license options and retain copyright. Published by Elsevier, ESE is co-organized by the Chinese Society for Environmental Sciences, Harbin Institute of Technology, and the Chinese Research Academy of Environmental Sciences, under the supervision of the China Association for Science and Technology.