使用牛顿法的增强型高阶和无二次衍生变体的高效有限元策略

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Aymen Laadhari , Helmi Temimi
{"title":"使用牛顿法的增强型高阶和无二次衍生变体的高效有限元策略","authors":"Aymen Laadhari ,&nbsp;Helmi Temimi","doi":"10.1016/j.amc.2024.129058","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we propose a stable finite element approximation by extending higher-order Newton's method to the multidimensional case for solving nonlinear systems of partial differential equations. This approach relies solely on the evaluation of Jacobian matrices and residuals, eliminating the need for computing higher-order derivatives. Achieving third and fifth-order convergence, it ensures stability and allows for significantly larger time steps compared to explicit methods. We thoroughly address accuracy and convergence, focusing on the singular <em>p</em>-Laplacian problem and the time-dependent lid-driven cavity benchmark. A globalized variant incorporating a continuation technique is employed to effectively handle high Reynolds number regimes. Through two-dimensional and three-dimensional numerical experiments, we demonstrate that the improved cubically convergent variant outperforms others, leading to substantial computational savings, notably halving the computational cost for the lid-driven cavity test at large Reynolds numbers.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient finite element strategy using enhanced high-order and second-derivative-free variants of Newton's method\",\"authors\":\"Aymen Laadhari ,&nbsp;Helmi Temimi\",\"doi\":\"10.1016/j.amc.2024.129058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we propose a stable finite element approximation by extending higher-order Newton's method to the multidimensional case for solving nonlinear systems of partial differential equations. This approach relies solely on the evaluation of Jacobian matrices and residuals, eliminating the need for computing higher-order derivatives. Achieving third and fifth-order convergence, it ensures stability and allows for significantly larger time steps compared to explicit methods. We thoroughly address accuracy and convergence, focusing on the singular <em>p</em>-Laplacian problem and the time-dependent lid-driven cavity benchmark. A globalized variant incorporating a continuation technique is employed to effectively handle high Reynolds number regimes. Through two-dimensional and three-dimensional numerical experiments, we demonstrate that the improved cubically convergent variant outperforms others, leading to substantial computational savings, notably halving the computational cost for the lid-driven cavity test at large Reynolds numbers.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300324005198\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324005198","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们提出了一种稳定的有限元近似方法,将高阶牛顿法扩展到多维情况下,用于求解非线性偏微分方程系统。这种方法仅依赖于雅各布矩阵和残差的评估,无需计算高阶导数。与显式方法相比,它能实现三阶和五阶收敛,确保稳定性,并允许显著增大时间步长。我们深入探讨了精度和收敛性问题,重点是奇异 p-Laplacian 问题和随时间变化的顶盖驱动空腔基准。我们采用了包含延续技术的全局化变体,以有效处理高雷诺数情况。通过二维和三维数值实验,我们证明了改进的立方收敛变体优于其他变体,从而节省了大量计算成本,尤其是在大雷诺数下,将盖子驱动空腔测试的计算成本降低了一半。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient finite element strategy using enhanced high-order and second-derivative-free variants of Newton's method

In this work, we propose a stable finite element approximation by extending higher-order Newton's method to the multidimensional case for solving nonlinear systems of partial differential equations. This approach relies solely on the evaluation of Jacobian matrices and residuals, eliminating the need for computing higher-order derivatives. Achieving third and fifth-order convergence, it ensures stability and allows for significantly larger time steps compared to explicit methods. We thoroughly address accuracy and convergence, focusing on the singular p-Laplacian problem and the time-dependent lid-driven cavity benchmark. A globalized variant incorporating a continuation technique is employed to effectively handle high Reynolds number regimes. Through two-dimensional and three-dimensional numerical experiments, we demonstrate that the improved cubically convergent variant outperforms others, leading to substantial computational savings, notably halving the computational cost for the lid-driven cavity test at large Reynolds numbers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信