利用异构保持网络多模态融合进行大规模交通预测

IF 14.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yimo Yan , Songyi Cui , Jiahui Liu , Yaping Zhao , Bodong Zhou , Yong-Hong Kuo
{"title":"利用异构保持网络多模态融合进行大规模交通预测","authors":"Yimo Yan ,&nbsp;Songyi Cui ,&nbsp;Jiahui Liu ,&nbsp;Yaping Zhao ,&nbsp;Bodong Zhou ,&nbsp;Yong-Hong Kuo","doi":"10.1016/j.inffus.2024.102695","DOIUrl":null,"url":null,"abstract":"<div><p>Traffic speed prediction is a critical challenge in transportation research due to the complex spatiotemporal dynamics of urban mobility. This study proposes a novel framework for fusing diverse data modalities to enhance short-term traffic speed forecasting accuracy. We introduce the Heterogeneous Retentive Network (H-RetNet), which integrates multisource urban data into high-dimensional representations encoded with geospatial relationships. By combining the H-RetNet with a Gated Recurrent Unit (GRU), our model captures intricate spatial and temporal correlations. We validate the approach using a real-world Beijing traffic dataset encompassing social media, real estate, and point of interest data. Experiments demonstrate superior performance over existing methods, with the fusion architecture improving robustness. Specifically, we observe a 21.91% reduction in MSE, underscoring the potential of our framework to inform and enhance traffic management strategies.</p></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"114 ","pages":"Article 102695"},"PeriodicalIF":14.7000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodal fusion for large-scale traffic prediction with heterogeneous retentive networks\",\"authors\":\"Yimo Yan ,&nbsp;Songyi Cui ,&nbsp;Jiahui Liu ,&nbsp;Yaping Zhao ,&nbsp;Bodong Zhou ,&nbsp;Yong-Hong Kuo\",\"doi\":\"10.1016/j.inffus.2024.102695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Traffic speed prediction is a critical challenge in transportation research due to the complex spatiotemporal dynamics of urban mobility. This study proposes a novel framework for fusing diverse data modalities to enhance short-term traffic speed forecasting accuracy. We introduce the Heterogeneous Retentive Network (H-RetNet), which integrates multisource urban data into high-dimensional representations encoded with geospatial relationships. By combining the H-RetNet with a Gated Recurrent Unit (GRU), our model captures intricate spatial and temporal correlations. We validate the approach using a real-world Beijing traffic dataset encompassing social media, real estate, and point of interest data. Experiments demonstrate superior performance over existing methods, with the fusion architecture improving robustness. Specifically, we observe a 21.91% reduction in MSE, underscoring the potential of our framework to inform and enhance traffic management strategies.</p></div>\",\"PeriodicalId\":50367,\"journal\":{\"name\":\"Information Fusion\",\"volume\":\"114 \",\"pages\":\"Article 102695\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Fusion\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1566253524004731\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253524004731","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

由于城市交通的时空动态十分复杂,因此交通速度预测是交通研究中的一项重要挑战。本研究提出了一种融合多种数据模式的新型框架,以提高短期交通速度预测的准确性。我们引入了异构保留网络(H-RetNet),它将多源城市数据整合为以地理空间关系编码的高维表示。通过将 H-RetNet 与门控递归单元 (GRU) 相结合,我们的模型可以捕捉到错综复杂的时空相关性。我们使用一个包含社交媒体、房地产和兴趣点数据的真实世界北京交通数据集对该方法进行了验证。实验表明,该方法的性能优于现有方法,其融合架构提高了鲁棒性。具体来说,我们观察到 MSE 降低了 21.91%,这凸显了我们的框架在为交通管理策略提供信息和增强交通管理策略方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multimodal fusion for large-scale traffic prediction with heterogeneous retentive networks

Traffic speed prediction is a critical challenge in transportation research due to the complex spatiotemporal dynamics of urban mobility. This study proposes a novel framework for fusing diverse data modalities to enhance short-term traffic speed forecasting accuracy. We introduce the Heterogeneous Retentive Network (H-RetNet), which integrates multisource urban data into high-dimensional representations encoded with geospatial relationships. By combining the H-RetNet with a Gated Recurrent Unit (GRU), our model captures intricate spatial and temporal correlations. We validate the approach using a real-world Beijing traffic dataset encompassing social media, real estate, and point of interest data. Experiments demonstrate superior performance over existing methods, with the fusion architecture improving robustness. Specifically, we observe a 21.91% reduction in MSE, underscoring the potential of our framework to inform and enhance traffic management strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Fusion
Information Fusion 工程技术-计算机:理论方法
CiteScore
33.20
自引率
4.30%
发文量
161
审稿时长
7.9 months
期刊介绍: Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信