{"title":"采用夹层结构的坚固 TiN 基光热超疏水性涂层,可有效防冰/除冰","authors":"","doi":"10.1016/j.porgcoat.2024.108816","DOIUrl":null,"url":null,"abstract":"<div><p>Photothermal superhydrophobic surfaces are prospective to become ideal anti−/de-icing surfaces because of their icing delay and rapid photothermal deicing property. Herein, a universal photothermal superhydrophobic composite coating (PSCC) was robustly sandwiched a photothermal layer based on hydrophobically modified titanium nitride (TiN) composite spherical nanoparticles (TiN@SiO<sub>2</sub>@OTES) between polydimethylsiloxane (PDMS) double layers (the top layer acting for protection and the bottom for thermal insulation and adhesion with the substrate). Due to the high photothermal conversion efficiency (66.0 %) of TiN nanoparticles, the composite coating demonstrated a satisfactory anti−/de-icing efficiency with a stable icing delay time (690 s at 1 sun and − 10 °C) and a fast photothermal de-icing capability (120 s under 1 sun and − 10 °C). In addition, the coating could maintain super-hydrophobicity exhibiting good durability and stability in the lash of sand and water due to the multi-layer design reinforced by PDMS, which was also favorable for residue-free removal of surface to achieve the self-cleaning. Overall, the robust corrosion-resistant photothermal superhydrophobic coating showed a potential for anti−/de-icing application.</p></div>","PeriodicalId":20834,"journal":{"name":"Progress in Organic Coatings","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust TiN-based photothermal superhydrophobic coating with sandwich structure for effective anti−/de-icing applications\",\"authors\":\"\",\"doi\":\"10.1016/j.porgcoat.2024.108816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Photothermal superhydrophobic surfaces are prospective to become ideal anti−/de-icing surfaces because of their icing delay and rapid photothermal deicing property. Herein, a universal photothermal superhydrophobic composite coating (PSCC) was robustly sandwiched a photothermal layer based on hydrophobically modified titanium nitride (TiN) composite spherical nanoparticles (TiN@SiO<sub>2</sub>@OTES) between polydimethylsiloxane (PDMS) double layers (the top layer acting for protection and the bottom for thermal insulation and adhesion with the substrate). Due to the high photothermal conversion efficiency (66.0 %) of TiN nanoparticles, the composite coating demonstrated a satisfactory anti−/de-icing efficiency with a stable icing delay time (690 s at 1 sun and − 10 °C) and a fast photothermal de-icing capability (120 s under 1 sun and − 10 °C). In addition, the coating could maintain super-hydrophobicity exhibiting good durability and stability in the lash of sand and water due to the multi-layer design reinforced by PDMS, which was also favorable for residue-free removal of surface to achieve the self-cleaning. Overall, the robust corrosion-resistant photothermal superhydrophobic coating showed a potential for anti−/de-icing application.</p></div>\",\"PeriodicalId\":20834,\"journal\":{\"name\":\"Progress in Organic Coatings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Organic Coatings\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0300944024006088\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Organic Coatings","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300944024006088","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Robust TiN-based photothermal superhydrophobic coating with sandwich structure for effective anti−/de-icing applications
Photothermal superhydrophobic surfaces are prospective to become ideal anti−/de-icing surfaces because of their icing delay and rapid photothermal deicing property. Herein, a universal photothermal superhydrophobic composite coating (PSCC) was robustly sandwiched a photothermal layer based on hydrophobically modified titanium nitride (TiN) composite spherical nanoparticles (TiN@SiO2@OTES) between polydimethylsiloxane (PDMS) double layers (the top layer acting for protection and the bottom for thermal insulation and adhesion with the substrate). Due to the high photothermal conversion efficiency (66.0 %) of TiN nanoparticles, the composite coating demonstrated a satisfactory anti−/de-icing efficiency with a stable icing delay time (690 s at 1 sun and − 10 °C) and a fast photothermal de-icing capability (120 s under 1 sun and − 10 °C). In addition, the coating could maintain super-hydrophobicity exhibiting good durability and stability in the lash of sand and water due to the multi-layer design reinforced by PDMS, which was also favorable for residue-free removal of surface to achieve the self-cleaning. Overall, the robust corrosion-resistant photothermal superhydrophobic coating showed a potential for anti−/de-icing application.
期刊介绍:
The aim of this international journal is to analyse and publicise the progress and current state of knowledge in the field of organic coatings and related materials. The Editors and the Editorial Board members will solicit both review and research papers from academic and industrial scientists who are actively engaged in research and development or, in the case of review papers, have extensive experience in the subject to be reviewed. Unsolicited manuscripts will be accepted if they meet the journal''s requirements. The journal publishes papers dealing with such subjects as:
• Chemical, physical and technological properties of organic coatings and related materials
• Problems and methods of preparation, manufacture and application of these materials
• Performance, testing and analysis.