通过环境透射电子显微镜原位揭示质子化钛酸钡纳米管的脱水和原子结构演变过程

IF 13.2 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chunxi Li , Xiaoyun Guo , Ying Jiang, Zhong-kang Han, Wentao Yuan, Hangsheng Yang, Yong Wang
{"title":"通过环境透射电子显微镜原位揭示质子化钛酸钡纳米管的脱水和原子结构演变过程","authors":"Chunxi Li ,&nbsp;Xiaoyun Guo ,&nbsp;Ying Jiang,&nbsp;Zhong-kang Han,&nbsp;Wentao Yuan,&nbsp;Hangsheng Yang,&nbsp;Yong Wang","doi":"10.1016/j.nantod.2024.102503","DOIUrl":null,"url":null,"abstract":"<div><p>The precise control of nanomaterial microstructure at the atomic level relies on the comprehensive understanding of atomic structural transition during the fabrication process at the atomic level. The phase transition from protonated titanate to TiO<sub>2</sub> is a prevalent route to synthesize low dimensional TiO<sub>2</sub>-based nanomaterials, which exhibit excellent photocatalytic, lithium-ion battery performances, while the detailed phase transition mechanism remains to be clarified due to lack of atomic-level in situ information. Herein, the atomic structural transitions from one-dimensional H<sub>2</sub>Ti<sub>3</sub>O<sub>7</sub> (HT) to TiO<sub>2</sub>(B) and anatase TiO<sub>2</sub> (TB and TA) nanocrystals were revealed through in situ environmental transmission electron microscopy, which exhibited a two-step phase transition at 200–600 °C. (I) H<sub>2</sub>Ti<sub>3</sub>O<sub>7</sub> to TiO<sub>2</sub>(B) transition began via an indirect pathway at ∼200 °C: The HT (200) interlayer dehydration occurred firstly with lattice shrinkage; Then TB discretely nucleated at the dehydrated H<sub>2</sub>Ti<sub>3</sub>O<sub>7</sub> nanotube wall with a crystallographic relationship of (200)<sub>HT</sub><em>∥</em>(200)<sub>TB</sub> {[001]<sub>HT</sub><em>∥</em>[001]<sub>TB</sub>}; At higher temperature, the separated nuclei grew up with defects and distorted crystal lattice among them, which then connected and jointed to a single crystalline TB nanotube by atomic rearrangement. (II) The further transition of TiO<sub>2</sub>(B) to anatase TiO<sub>2</sub> occurred via a direct pathway above 400 °C: Scarce nucleation event of TA phase was observed, which generated within TB nanocrystal with a crystallographic relationship of (200)<sub>TB</sub><em>∥</em>(002)<sub>TA</sub> {[001]<sub>TB</sub><em>∥</em>[010]<sub>TA</sub>}. Once a TA nucleus formed, it grew up to a large crystal by consuming the neighbor TB nanocrystals. These findings may contribute to comprehensively understanding phase transition and precisely manipulating the atomic structure of one-dimensional TiO<sub>2</sub> nanocrystals.</p></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"59 ","pages":"Article 102503"},"PeriodicalIF":13.2000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In situ revealing the dehydration and atomic structure evolution of protonated titanate nanotubes via environmental transmission electron microscopy\",\"authors\":\"Chunxi Li ,&nbsp;Xiaoyun Guo ,&nbsp;Ying Jiang,&nbsp;Zhong-kang Han,&nbsp;Wentao Yuan,&nbsp;Hangsheng Yang,&nbsp;Yong Wang\",\"doi\":\"10.1016/j.nantod.2024.102503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The precise control of nanomaterial microstructure at the atomic level relies on the comprehensive understanding of atomic structural transition during the fabrication process at the atomic level. The phase transition from protonated titanate to TiO<sub>2</sub> is a prevalent route to synthesize low dimensional TiO<sub>2</sub>-based nanomaterials, which exhibit excellent photocatalytic, lithium-ion battery performances, while the detailed phase transition mechanism remains to be clarified due to lack of atomic-level in situ information. Herein, the atomic structural transitions from one-dimensional H<sub>2</sub>Ti<sub>3</sub>O<sub>7</sub> (HT) to TiO<sub>2</sub>(B) and anatase TiO<sub>2</sub> (TB and TA) nanocrystals were revealed through in situ environmental transmission electron microscopy, which exhibited a two-step phase transition at 200–600 °C. (I) H<sub>2</sub>Ti<sub>3</sub>O<sub>7</sub> to TiO<sub>2</sub>(B) transition began via an indirect pathway at ∼200 °C: The HT (200) interlayer dehydration occurred firstly with lattice shrinkage; Then TB discretely nucleated at the dehydrated H<sub>2</sub>Ti<sub>3</sub>O<sub>7</sub> nanotube wall with a crystallographic relationship of (200)<sub>HT</sub><em>∥</em>(200)<sub>TB</sub> {[001]<sub>HT</sub><em>∥</em>[001]<sub>TB</sub>}; At higher temperature, the separated nuclei grew up with defects and distorted crystal lattice among them, which then connected and jointed to a single crystalline TB nanotube by atomic rearrangement. (II) The further transition of TiO<sub>2</sub>(B) to anatase TiO<sub>2</sub> occurred via a direct pathway above 400 °C: Scarce nucleation event of TA phase was observed, which generated within TB nanocrystal with a crystallographic relationship of (200)<sub>TB</sub><em>∥</em>(002)<sub>TA</sub> {[001]<sub>TB</sub><em>∥</em>[010]<sub>TA</sub>}. Once a TA nucleus formed, it grew up to a large crystal by consuming the neighbor TB nanocrystals. These findings may contribute to comprehensively understanding phase transition and precisely manipulating the atomic structure of one-dimensional TiO<sub>2</sub> nanocrystals.</p></div>\",\"PeriodicalId\":395,\"journal\":{\"name\":\"Nano Today\",\"volume\":\"59 \",\"pages\":\"Article 102503\"},\"PeriodicalIF\":13.2000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Today\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1748013224003591\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1748013224003591","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

要在原子水平上精确控制纳米材料的微观结构,就必须在原子水平上全面了解制备过程中的原子结构转变。从质子化钛酸酯到TiO2的相变是合成低维TiO2基纳米材料的普遍途径,这种材料具有优异的光催化、锂离子电池性能,但由于缺乏原子水平的原位信息,其详细的相变机制仍有待阐明。本文通过原位环境透射电子显微镜揭示了从一维H2Ti3O7(HT)到TiO2(B)和锐钛型TiO2(TB和TA)纳米晶体的原子结构转变,在200-600 ℃时呈现出两步相变。(I) H2Ti3O7 到 TiO2(B) 的转变在 ∼200 °C 时通过间接途径开始:首先,HT(200)层间脱水,晶格收缩;然后,TB 在脱水的 H2Ti3O7 纳米管壁上离散成核,其晶体学关系为(200)HT∥(200)TB {[001]HT∥[001]TB};在更高温度下,分离的晶核长大,它们之间存在缺陷和扭曲的晶格,然后通过原子重排连接成单晶的 TB 纳米管。(II) TiO2(B) 在 400 °C 以上通过直接途径进一步转变为锐钛矿型 TiO2:观察到 TA 相的稀少成核事件,它在 TB 纳米晶体内生成,其晶体学关系为 (200)TB∥(002)TA {[001]TB∥[010]TA}。一旦 TA 核形成,它就会通过吞噬邻近的 TB 纳米晶体而成长为大晶体。这些发现可能有助于全面理解相变和精确操纵一维二氧化钛纳米晶体的原子结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In situ revealing the dehydration and atomic structure evolution of protonated titanate nanotubes via environmental transmission electron microscopy

The precise control of nanomaterial microstructure at the atomic level relies on the comprehensive understanding of atomic structural transition during the fabrication process at the atomic level. The phase transition from protonated titanate to TiO2 is a prevalent route to synthesize low dimensional TiO2-based nanomaterials, which exhibit excellent photocatalytic, lithium-ion battery performances, while the detailed phase transition mechanism remains to be clarified due to lack of atomic-level in situ information. Herein, the atomic structural transitions from one-dimensional H2Ti3O7 (HT) to TiO2(B) and anatase TiO2 (TB and TA) nanocrystals were revealed through in situ environmental transmission electron microscopy, which exhibited a two-step phase transition at 200–600 °C. (I) H2Ti3O7 to TiO2(B) transition began via an indirect pathway at ∼200 °C: The HT (200) interlayer dehydration occurred firstly with lattice shrinkage; Then TB discretely nucleated at the dehydrated H2Ti3O7 nanotube wall with a crystallographic relationship of (200)HT(200)TB {[001]HT[001]TB}; At higher temperature, the separated nuclei grew up with defects and distorted crystal lattice among them, which then connected and jointed to a single crystalline TB nanotube by atomic rearrangement. (II) The further transition of TiO2(B) to anatase TiO2 occurred via a direct pathway above 400 °C: Scarce nucleation event of TA phase was observed, which generated within TB nanocrystal with a crystallographic relationship of (200)TB(002)TA {[001]TB[010]TA}. Once a TA nucleus formed, it grew up to a large crystal by consuming the neighbor TB nanocrystals. These findings may contribute to comprehensively understanding phase transition and precisely manipulating the atomic structure of one-dimensional TiO2 nanocrystals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Today
Nano Today 工程技术-材料科学:综合
CiteScore
21.50
自引率
3.40%
发文量
305
审稿时长
40 days
期刊介绍: Nano Today is a journal dedicated to publishing influential and innovative work in the field of nanoscience and technology. It covers a wide range of subject areas including biomaterials, materials chemistry, materials science, chemistry, bioengineering, biochemistry, genetics and molecular biology, engineering, and nanotechnology. The journal considers articles that inform readers about the latest research, breakthroughs, and topical issues in these fields. It provides comprehensive coverage through a mixture of peer-reviewed articles, research news, and information on key developments. Nano Today is abstracted and indexed in Science Citation Index, Ei Compendex, Embase, Scopus, and INSPEC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信