用于高效水分离的过渡金属电催化剂的战略结构设计:全面综述

IF 13.2 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jagadis Gautam, Seul-Yi Lee, Soo-Jin Park
{"title":"用于高效水分离的过渡金属电催化剂的战略结构设计:全面综述","authors":"Jagadis Gautam,&nbsp;Seul-Yi Lee,&nbsp;Soo-Jin Park","doi":"10.1016/j.nantod.2024.102487","DOIUrl":null,"url":null,"abstract":"<div><p>Electrochemical water splitting (EWS) is a pivotal method for sustainable hydrogen (H<sub>2</sub>) generation, yet it faces challenges due to limited accessibility and high costs associated with precious metal electrocatalysts. Efforts in research have thus been directed toward developing cost-effective alternatives to drive widespread adoption. Transition metals (TMs) emerge as promising candidates to replace noble metal-based electrocatalysts in EWS, offering abundance and affordability. This review surveys recent advancements and innovative methodologies in designing TM-based electrocatalysts, focusing on strategies such as defect engineering of MXene. This approach demonstrates considerable potential in enhancing EWS technology. Moreover, the review underscores the necessity of comprehending the fundamental mechanisms and activity-limiting factors inherent in EWS. It advocates for catalyst engineering strategies, integration of theoretical calculations, and modern <em>in situ</em> characterization techniques to facilitate the commercialization of electrocatalysts for sustainable hydrogen production. By integrating recent progress and ongoing challenges, this review seeks to present insights into the frontier of TM-based electrocatalysts and their role in advancing the field of EWS toward a more sustainable future.</p></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"59 ","pages":"Article 102487"},"PeriodicalIF":13.2000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strategic structural design of transition metal electrocatalysts for efficient water splitting: A comprehensive review\",\"authors\":\"Jagadis Gautam,&nbsp;Seul-Yi Lee,&nbsp;Soo-Jin Park\",\"doi\":\"10.1016/j.nantod.2024.102487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Electrochemical water splitting (EWS) is a pivotal method for sustainable hydrogen (H<sub>2</sub>) generation, yet it faces challenges due to limited accessibility and high costs associated with precious metal electrocatalysts. Efforts in research have thus been directed toward developing cost-effective alternatives to drive widespread adoption. Transition metals (TMs) emerge as promising candidates to replace noble metal-based electrocatalysts in EWS, offering abundance and affordability. This review surveys recent advancements and innovative methodologies in designing TM-based electrocatalysts, focusing on strategies such as defect engineering of MXene. This approach demonstrates considerable potential in enhancing EWS technology. Moreover, the review underscores the necessity of comprehending the fundamental mechanisms and activity-limiting factors inherent in EWS. It advocates for catalyst engineering strategies, integration of theoretical calculations, and modern <em>in situ</em> characterization techniques to facilitate the commercialization of electrocatalysts for sustainable hydrogen production. By integrating recent progress and ongoing challenges, this review seeks to present insights into the frontier of TM-based electrocatalysts and their role in advancing the field of EWS toward a more sustainable future.</p></div>\",\"PeriodicalId\":395,\"journal\":{\"name\":\"Nano Today\",\"volume\":\"59 \",\"pages\":\"Article 102487\"},\"PeriodicalIF\":13.2000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Today\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1748013224003438\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1748013224003438","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电化学水分离(EWS)是可持续制氢(H2)的关键方法,但由于贵金属电催化剂的可获得性有限且成本高昂,这种方法面临着挑战。因此,研究人员一直致力于开发具有成本效益的替代品,以推动其广泛应用。过渡金属(TMs)以其丰富的资源和可负担性,成为替代 EWS 中贵金属电催化剂的理想候选材料。本综述探讨了设计基于 TM 的电催化剂的最新进展和创新方法,重点是 MXene 的缺陷工程等策略。这种方法在提高 EWS 技术方面具有相当大的潜力。此外,综述还强调了理解 EWS 固有的基本机制和活性限制因素的必要性。它倡导催化剂工程策略、理论计算与现代原位表征技术的整合,以促进可持续制氢电催化剂的商业化。通过整合最新进展和当前挑战,本综述旨在深入探讨基于 TM 的电催化剂的前沿及其在推动 EWS 领域迈向更可持续的未来中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strategic structural design of transition metal electrocatalysts for efficient water splitting: A comprehensive review

Electrochemical water splitting (EWS) is a pivotal method for sustainable hydrogen (H2) generation, yet it faces challenges due to limited accessibility and high costs associated with precious metal electrocatalysts. Efforts in research have thus been directed toward developing cost-effective alternatives to drive widespread adoption. Transition metals (TMs) emerge as promising candidates to replace noble metal-based electrocatalysts in EWS, offering abundance and affordability. This review surveys recent advancements and innovative methodologies in designing TM-based electrocatalysts, focusing on strategies such as defect engineering of MXene. This approach demonstrates considerable potential in enhancing EWS technology. Moreover, the review underscores the necessity of comprehending the fundamental mechanisms and activity-limiting factors inherent in EWS. It advocates for catalyst engineering strategies, integration of theoretical calculations, and modern in situ characterization techniques to facilitate the commercialization of electrocatalysts for sustainable hydrogen production. By integrating recent progress and ongoing challenges, this review seeks to present insights into the frontier of TM-based electrocatalysts and their role in advancing the field of EWS toward a more sustainable future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Today
Nano Today 工程技术-材料科学:综合
CiteScore
21.50
自引率
3.40%
发文量
305
审稿时长
40 days
期刊介绍: Nano Today is a journal dedicated to publishing influential and innovative work in the field of nanoscience and technology. It covers a wide range of subject areas including biomaterials, materials chemistry, materials science, chemistry, bioengineering, biochemistry, genetics and molecular biology, engineering, and nanotechnology. The journal considers articles that inform readers about the latest research, breakthroughs, and topical issues in these fields. It provides comprehensive coverage through a mixture of peer-reviewed articles, research news, and information on key developments. Nano Today is abstracted and indexed in Science Citation Index, Ei Compendex, Embase, Scopus, and INSPEC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信