{"title":"用绿色和回流法合成 CeO2/rGO 以确定其特性并实现染料的光降解","authors":"M.C. Roopa , S. Thirumala , Sharadadevi Kallimani , B.M. Manohara","doi":"10.1016/j.scowo.2024.100024","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, cerium oxide (CeO<sub>2</sub>) was synthesized using a green and eco-friendly solution combustion method with lemongrass as the fuel source. The synthesis process was simple and environmentally friendly, leveraging a straightforward reflux technique to prepare the CeO<sub>2</sub>/rGO composite. The resulting CeO<sub>2</sub> and CeO<sub>2</sub>/rGO composite was characterized using various analytical techniques, including XRD, FE-SEM, FTIR, EDX, UV-Vis, XPS, and BET analysis. The photocatalytic performance of the CeO<sub>2</sub>/rGO composite was evaluated through the degradation of Methyl Violet (MV) dye, demonstrating a remarkable photocatalytic efficiency with approximately 99 % degradation following a first-order reaction kinetics. The half-life period (t₁/₂) of the degradation process was determined to be 19.01 minutes, and the rate constant (k) was calculated to be 0.03971 min⁻¹. The study also explored various factors affecting the photocatalytic activity, including pH levels, dye concentration, light source, and the amount of catalyst used. Additionally, scavenger studies were performed to identify the reactive species involved, and the total organic carbon (TOC) removal efficiency was evaluated. The reusability of the CeO<sub>2</sub>/rGO catalyst was also investigated, demonstrating its potential for sustainable and effective application in environmental remediation processes.</p></div>","PeriodicalId":101197,"journal":{"name":"Sustainable Chemistry One World","volume":"4 ","pages":"Article 100024"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green and Reflux method synthesis of CeO2/rGO for their characterization and Photodegradation of dye\",\"authors\":\"M.C. Roopa , S. Thirumala , Sharadadevi Kallimani , B.M. Manohara\",\"doi\":\"10.1016/j.scowo.2024.100024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, cerium oxide (CeO<sub>2</sub>) was synthesized using a green and eco-friendly solution combustion method with lemongrass as the fuel source. The synthesis process was simple and environmentally friendly, leveraging a straightforward reflux technique to prepare the CeO<sub>2</sub>/rGO composite. The resulting CeO<sub>2</sub> and CeO<sub>2</sub>/rGO composite was characterized using various analytical techniques, including XRD, FE-SEM, FTIR, EDX, UV-Vis, XPS, and BET analysis. The photocatalytic performance of the CeO<sub>2</sub>/rGO composite was evaluated through the degradation of Methyl Violet (MV) dye, demonstrating a remarkable photocatalytic efficiency with approximately 99 % degradation following a first-order reaction kinetics. The half-life period (t₁/₂) of the degradation process was determined to be 19.01 minutes, and the rate constant (k) was calculated to be 0.03971 min⁻¹. The study also explored various factors affecting the photocatalytic activity, including pH levels, dye concentration, light source, and the amount of catalyst used. Additionally, scavenger studies were performed to identify the reactive species involved, and the total organic carbon (TOC) removal efficiency was evaluated. The reusability of the CeO<sub>2</sub>/rGO catalyst was also investigated, demonstrating its potential for sustainable and effective application in environmental remediation processes.</p></div>\",\"PeriodicalId\":101197,\"journal\":{\"name\":\"Sustainable Chemistry One World\",\"volume\":\"4 \",\"pages\":\"Article 100024\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Chemistry One World\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2950357424000246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Chemistry One World","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950357424000246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Green and Reflux method synthesis of CeO2/rGO for their characterization and Photodegradation of dye
In this study, cerium oxide (CeO2) was synthesized using a green and eco-friendly solution combustion method with lemongrass as the fuel source. The synthesis process was simple and environmentally friendly, leveraging a straightforward reflux technique to prepare the CeO2/rGO composite. The resulting CeO2 and CeO2/rGO composite was characterized using various analytical techniques, including XRD, FE-SEM, FTIR, EDX, UV-Vis, XPS, and BET analysis. The photocatalytic performance of the CeO2/rGO composite was evaluated through the degradation of Methyl Violet (MV) dye, demonstrating a remarkable photocatalytic efficiency with approximately 99 % degradation following a first-order reaction kinetics. The half-life period (t₁/₂) of the degradation process was determined to be 19.01 minutes, and the rate constant (k) was calculated to be 0.03971 min⁻¹. The study also explored various factors affecting the photocatalytic activity, including pH levels, dye concentration, light source, and the amount of catalyst used. Additionally, scavenger studies were performed to identify the reactive species involved, and the total organic carbon (TOC) removal efficiency was evaluated. The reusability of the CeO2/rGO catalyst was also investigated, demonstrating its potential for sustainable and effective application in environmental remediation processes.