持久同调的代数和计算阐述

Jason Ranoa
{"title":"持久同调的代数和计算阐述","authors":"Jason Ranoa","doi":"arxiv-2408.07899","DOIUrl":null,"url":null,"abstract":"We discuss the algebra behind the matrix reduction algorithm for persistent\nhomology, as presented in the paper ''Computing Persistent Homology'' by Afra\nZomorodian and Gunnar Carlsson, in the lens of the more modern characterization\nof persistence modules as functors from a poset category to a category of\nvector spaces over a field adopted by authors such as Peter Bubenik, Frederik\nChazal, and Ulrich Bauer.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Exposition on the Algebra and Computation of Persistent Homology\",\"authors\":\"Jason Ranoa\",\"doi\":\"arxiv-2408.07899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss the algebra behind the matrix reduction algorithm for persistent\\nhomology, as presented in the paper ''Computing Persistent Homology'' by Afra\\nZomorodian and Gunnar Carlsson, in the lens of the more modern characterization\\nof persistence modules as functors from a poset category to a category of\\nvector spaces over a field adopted by authors such as Peter Bubenik, Frederik\\nChazal, and Ulrich Bauer.\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.07899\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.07899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们从彼得-布贝尼克(Peter Bubenik)、弗雷德里克-查扎尔(FrederikChazal)和乌尔里希-鲍尔(Ulrich Bauer)等作者所采用的持久性模块的现代特征描述角度,讨论了阿夫拉-佐莫罗迪安和贡纳尔-卡尔松在论文《计算持久性同源性》(Computing Persistent Homology)中提出的持久性同源性矩阵还原算法背后的代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Exposition on the Algebra and Computation of Persistent Homology
We discuss the algebra behind the matrix reduction algorithm for persistent homology, as presented in the paper ''Computing Persistent Homology'' by Afra Zomorodian and Gunnar Carlsson, in the lens of the more modern characterization of persistence modules as functors from a poset category to a category of vector spaces over a field adopted by authors such as Peter Bubenik, Frederik Chazal, and Ulrich Bauer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信