真菌识别器(FId):一种最新的聚合酶链式反应-限制性片段长度多态性方法,用于简化生态学研究中对子囊菌酵母分离物的鉴定

IF 4.2 2区 生物学 Q2 MICROBIOLOGY
Silvia Abbà, Beatrice Valentini, Irene Stefanini
{"title":"真菌识别器(FId):一种最新的聚合酶链式反应-限制性片段长度多态性方法,用于简化生态学研究中对子囊菌酵母分离物的鉴定","authors":"Silvia Abbà, Beatrice Valentini, Irene Stefanini","doi":"10.3390/jof10090595","DOIUrl":null,"url":null,"abstract":"Culturomics has been temporarily exceeded by the advent of omics approaches such as metabarcoding and metagenomics. However, despite improving our knowledge of microbial population composition, both metabarcoding and metagenomics are not suitable for investigating and experimental testing inferences about microbial ecological roles and evolution. This leads to a recent revival of culturomics approaches, which should be supported by improvements in the available tools for high-throughput microbial identification. This study aimed to update the classical PCR-RFLP approach in light of the currently available knowledge on yeast genomics. We generated and analyzed a database including more than 1400 ascomycetous yeast species, each characterized by PCR-RFLP profiles obtained with 143 different endonucleases. The results allowed for the in silico evaluation of the performance of the tested endonucleases in the yeast species’ identification and the generation of FId (Fungal Identifier), an online freely accessible tool for the identification of yeast species according to experimentally obtained PCR-RFLP profiles.","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fungal Identifier (FId): An Updated Polymerase Chain Reaction–Restriction Fragment Length Polymorphism Approach to Ease Ascomycetous Yeast Isolates’ Identification in Ecological Studies\",\"authors\":\"Silvia Abbà, Beatrice Valentini, Irene Stefanini\",\"doi\":\"10.3390/jof10090595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Culturomics has been temporarily exceeded by the advent of omics approaches such as metabarcoding and metagenomics. However, despite improving our knowledge of microbial population composition, both metabarcoding and metagenomics are not suitable for investigating and experimental testing inferences about microbial ecological roles and evolution. This leads to a recent revival of culturomics approaches, which should be supported by improvements in the available tools for high-throughput microbial identification. This study aimed to update the classical PCR-RFLP approach in light of the currently available knowledge on yeast genomics. We generated and analyzed a database including more than 1400 ascomycetous yeast species, each characterized by PCR-RFLP profiles obtained with 143 different endonucleases. The results allowed for the in silico evaluation of the performance of the tested endonucleases in the yeast species’ identification and the generation of FId (Fungal Identifier), an online freely accessible tool for the identification of yeast species according to experimentally obtained PCR-RFLP profiles.\",\"PeriodicalId\":15878,\"journal\":{\"name\":\"Journal of Fungi\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fungi\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/jof10090595\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fungi","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/jof10090595","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

培养组学的地位暂时被代谢编码和元基因组学等全方位组学方法所取代。然而,尽管我们对微生物种群组成的了解有所提高,但代谢编码和元基因组学都不适合用于调查和实验测试有关微生物生态作用和进化的推论。这就导致了最近培养组学方法的复兴,而培养组学方法应得到现有高通量微生物鉴定工具改进的支持。本研究旨在根据现有的酵母基因组学知识更新经典的 PCR-RFLP 方法。我们生成并分析了一个包含 1400 多个子囊菌酵母物种的数据库,每个物种的特征都是用 143 种不同的内切酶获得的 PCR-RFLP 图谱。根据这些结果,我们对所测试的内切酶在酵母物种鉴定中的性能进行了硅学评估,并生成了 FId(真菌鉴定器),这是一种可免费访问的在线工具,用于根据实验获得的 PCR-RFLP 图谱鉴定酵母物种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fungal Identifier (FId): An Updated Polymerase Chain Reaction–Restriction Fragment Length Polymorphism Approach to Ease Ascomycetous Yeast Isolates’ Identification in Ecological Studies
Culturomics has been temporarily exceeded by the advent of omics approaches such as metabarcoding and metagenomics. However, despite improving our knowledge of microbial population composition, both metabarcoding and metagenomics are not suitable for investigating and experimental testing inferences about microbial ecological roles and evolution. This leads to a recent revival of culturomics approaches, which should be supported by improvements in the available tools for high-throughput microbial identification. This study aimed to update the classical PCR-RFLP approach in light of the currently available knowledge on yeast genomics. We generated and analyzed a database including more than 1400 ascomycetous yeast species, each characterized by PCR-RFLP profiles obtained with 143 different endonucleases. The results allowed for the in silico evaluation of the performance of the tested endonucleases in the yeast species’ identification and the generation of FId (Fungal Identifier), an online freely accessible tool for the identification of yeast species according to experimentally obtained PCR-RFLP profiles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Fungi
Journal of Fungi Medicine-Microbiology (medical)
CiteScore
6.70
自引率
14.90%
发文量
1151
审稿时长
11 weeks
期刊介绍: Journal of Fungi (ISSN 2309-608X) is an international, peer-reviewed scientific open access journal that provides an advanced forum for studies related to pathogenic fungi, fungal biology, and all other aspects of fungal research. The journal publishes reviews, regular research papers, and communications in quarterly issues. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on paper length. Full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信