{"title":"基于同轴电纺丝技术的聚乳酸/聚乙二醇热调节纳米纤维的开发及内纺丝溶液浓度的探索","authors":"Baoji Hu, Yike Peng, Yirui Chen, Jingyu Ma, Feiyang Xu, Yifan Zhang, Manan Zhai, Xu Wang, Weili Shao","doi":"10.1007/s12221-024-00702-5","DOIUrl":null,"url":null,"abstract":"<div><p>To develop thermal regulation nanofibers, this work used polyethylene glycol (PEG) solution and polylactic acid (PLA) solution as the inner and outer spinning fluids and developed PLA/PEG (<i>P</i><sub>o</sub><i>P</i><sub>i</sub>) nanofibers using coaxial electrospinning process. Through XRD, FTIR, and water contact angle analysis, it was confirmed that the PLA of <i>P</i><sub>o</sub><i>P</i><sub>i</sub> has a certain encapsulation effect on the inner layer of PEG, but the encapsulation effect decreases with the increase of PEG spinning solution concentration. PEG20 with a PEG spinning solution concentration of 20 wt% obtained smaller average diameters, while PEG40 with a PEG spinning solution concentration of 40 wt% showed a significant decrease in fiber formability and hydrophobicity. PEG significantly improved the mechanical properties of <i>P</i><sub>o</sub><i>P</i><sub>i</sub>, and the Young’s modulus, yield stress, breaking stress, and breaking strain of PEG30 were increased by 18.24 MPa, 2.13 MPa, 3.54 MPa, and 41.65%, respectively, compared to pure PLA. The DSC curves of <i>P</i><sub>o</sub><i>P</i><sub>i</sub> show a melting endothermic peak attributed to PEG, and the peak temperature gradually decreases with increasing PEG concentration. The <i>P</i><sub>o</sub><i>P</i><sub>i</sub> exhibits temperature hysteresis during both heating and cooling processes, with PEG30 experiencing delays of 7.6 °C and 6.8 °C compared to pure PLA after heating and cooling for 5 s, respectively, indicating excellent thermal regulation ability. This work investigated the effect of PEG spinning solution concentration on inner and outer layer differences and the performance of <i>P</i><sub>o</sub><i>P</i><sub>i</sub>, providing a theoretical basis for the development of coaxial electrospinning nanofibers for thermal regulation based on low-molecular-weight PEG.</p></div>","PeriodicalId":557,"journal":{"name":"Fibers and Polymers","volume":"25 10","pages":"3699 - 3710"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of PLA/PEG Thermal Regulation Nanofibers Based on Coaxial Electrospinning and Exploration of Inner Spinning Solution Concentration\",\"authors\":\"Baoji Hu, Yike Peng, Yirui Chen, Jingyu Ma, Feiyang Xu, Yifan Zhang, Manan Zhai, Xu Wang, Weili Shao\",\"doi\":\"10.1007/s12221-024-00702-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To develop thermal regulation nanofibers, this work used polyethylene glycol (PEG) solution and polylactic acid (PLA) solution as the inner and outer spinning fluids and developed PLA/PEG (<i>P</i><sub>o</sub><i>P</i><sub>i</sub>) nanofibers using coaxial electrospinning process. Through XRD, FTIR, and water contact angle analysis, it was confirmed that the PLA of <i>P</i><sub>o</sub><i>P</i><sub>i</sub> has a certain encapsulation effect on the inner layer of PEG, but the encapsulation effect decreases with the increase of PEG spinning solution concentration. PEG20 with a PEG spinning solution concentration of 20 wt% obtained smaller average diameters, while PEG40 with a PEG spinning solution concentration of 40 wt% showed a significant decrease in fiber formability and hydrophobicity. PEG significantly improved the mechanical properties of <i>P</i><sub>o</sub><i>P</i><sub>i</sub>, and the Young’s modulus, yield stress, breaking stress, and breaking strain of PEG30 were increased by 18.24 MPa, 2.13 MPa, 3.54 MPa, and 41.65%, respectively, compared to pure PLA. The DSC curves of <i>P</i><sub>o</sub><i>P</i><sub>i</sub> show a melting endothermic peak attributed to PEG, and the peak temperature gradually decreases with increasing PEG concentration. The <i>P</i><sub>o</sub><i>P</i><sub>i</sub> exhibits temperature hysteresis during both heating and cooling processes, with PEG30 experiencing delays of 7.6 °C and 6.8 °C compared to pure PLA after heating and cooling for 5 s, respectively, indicating excellent thermal regulation ability. This work investigated the effect of PEG spinning solution concentration on inner and outer layer differences and the performance of <i>P</i><sub>o</sub><i>P</i><sub>i</sub>, providing a theoretical basis for the development of coaxial electrospinning nanofibers for thermal regulation based on low-molecular-weight PEG.</p></div>\",\"PeriodicalId\":557,\"journal\":{\"name\":\"Fibers and Polymers\",\"volume\":\"25 10\",\"pages\":\"3699 - 3710\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fibers and Polymers\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12221-024-00702-5\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, TEXTILES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers and Polymers","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12221-024-00702-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
Development of PLA/PEG Thermal Regulation Nanofibers Based on Coaxial Electrospinning and Exploration of Inner Spinning Solution Concentration
To develop thermal regulation nanofibers, this work used polyethylene glycol (PEG) solution and polylactic acid (PLA) solution as the inner and outer spinning fluids and developed PLA/PEG (PoPi) nanofibers using coaxial electrospinning process. Through XRD, FTIR, and water contact angle analysis, it was confirmed that the PLA of PoPi has a certain encapsulation effect on the inner layer of PEG, but the encapsulation effect decreases with the increase of PEG spinning solution concentration. PEG20 with a PEG spinning solution concentration of 20 wt% obtained smaller average diameters, while PEG40 with a PEG spinning solution concentration of 40 wt% showed a significant decrease in fiber formability and hydrophobicity. PEG significantly improved the mechanical properties of PoPi, and the Young’s modulus, yield stress, breaking stress, and breaking strain of PEG30 were increased by 18.24 MPa, 2.13 MPa, 3.54 MPa, and 41.65%, respectively, compared to pure PLA. The DSC curves of PoPi show a melting endothermic peak attributed to PEG, and the peak temperature gradually decreases with increasing PEG concentration. The PoPi exhibits temperature hysteresis during both heating and cooling processes, with PEG30 experiencing delays of 7.6 °C and 6.8 °C compared to pure PLA after heating and cooling for 5 s, respectively, indicating excellent thermal regulation ability. This work investigated the effect of PEG spinning solution concentration on inner and outer layer differences and the performance of PoPi, providing a theoretical basis for the development of coaxial electrospinning nanofibers for thermal regulation based on low-molecular-weight PEG.
期刊介绍:
-Chemistry of Fiber Materials, Polymer Reactions and Synthesis-
Physical Properties of Fibers, Polymer Blends and Composites-
Fiber Spinning and Textile Processing, Polymer Physics, Morphology-
Colorants and Dyeing, Polymer Analysis and Characterization-
Chemical Aftertreatment of Textiles, Polymer Processing and Rheology-
Textile and Apparel Science, Functional Polymers