{"title":"结合放射组学和自动编码器在 US 图像上区分良性和恶性乳腺肿瘤","authors":"Zuzanna Anna Magnuska,Rijo Roy,Moritz Palmowski,Matthias Kohlen,Brigitte Sophia Winkler,Tatjana Pfeil,Peter Boor,Volkmar Schulz,Katja Krauss,Elmar Stickeler,Fabian Kiessling","doi":"10.1148/radiol.232554","DOIUrl":null,"url":null,"abstract":"Background US is clinically established for breast imaging, but its diagnostic performance depends on operator experience. Computer-assisted (real-time) image analysis may help in overcoming this limitation. Purpose To develop precise real-time-capable US-based breast tumor categorization by combining classic radiomics and autoencoder-based features from automatically localized lesions. Materials and Methods A total of 1619 B-mode US images of breast tumors were retrospectively analyzed between April 2018 and January 2024. nnU-Net was trained for lesion segmentation. Features were extracted from tumor segments, bounding boxes, and whole images using either classic radiomics, autoencoder, or both. Feature selection was performed to generate radiomics signatures, which were used to train machine learning algorithms for tumor categorization. Models were evaluated using the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity and were statistically compared with histopathologically or follow-up-confirmed diagnosis. Results The model was developed on 1191 (mean age, 61 years ± 14 [SD]) female patients and externally validated on 50 (mean age, 55 years ± 15]). The development data set was divided into two parts: testing and training lesion segmentation (419 and 179 examinations) and lesion categorization (503 and 90 examinations). nnU-Net demonstrated precision and reproducibility in lesion segmentation in test set of data set 1 (median Dice score [DS]: 0.90 [IQR, 0.84-0.93]; P = .01) and data set 2 (median DS: 0.89 [IQR, 0.80-0.92]; P = .001). The best model, trained with 23 mixed features from tumor bounding boxes, achieved an AUC of 0.90 (95% CI: 0.83, 0.97), sensitivity of 81% (46 of 57; 95% CI: 70, 91), and specificity of 87% (39 of 45; 95% CI: 77, 87). No evidence of difference was found between model and human readers (AUC = 0.90 [95% CI: 0.83, 0.97] vs 0.83 [95% CI: 0.76, 0.90]; P = .55 and 0.90 vs 0.82 [95% CI: 0.75, 0.90]; P = .45) in tumor classification or between model and histopathologically or follow-up-confirmed diagnosis (AUC = 0.90 [95% CI: 0.83, 0.97] vs 1.00 [95% CI: 1.00,1.00]; P = .10). Conclusion Precise real-time US-based breast tumor categorization was developed by mixing classic radiomics and autoencoder-based features from tumor bounding boxes. ClinicalTrials.gov identifier: NCT04976257 Published under a CC BY 4.0 license. Supplemental material is available for this article. See also the editorial by Bahl in this issue.","PeriodicalId":20896,"journal":{"name":"Radiology","volume":null,"pages":null},"PeriodicalIF":12.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining Radiomics and Autoencoders to Distinguish Benign and Malignant Breast Tumors on US Images.\",\"authors\":\"Zuzanna Anna Magnuska,Rijo Roy,Moritz Palmowski,Matthias Kohlen,Brigitte Sophia Winkler,Tatjana Pfeil,Peter Boor,Volkmar Schulz,Katja Krauss,Elmar Stickeler,Fabian Kiessling\",\"doi\":\"10.1148/radiol.232554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background US is clinically established for breast imaging, but its diagnostic performance depends on operator experience. Computer-assisted (real-time) image analysis may help in overcoming this limitation. Purpose To develop precise real-time-capable US-based breast tumor categorization by combining classic radiomics and autoencoder-based features from automatically localized lesions. Materials and Methods A total of 1619 B-mode US images of breast tumors were retrospectively analyzed between April 2018 and January 2024. nnU-Net was trained for lesion segmentation. Features were extracted from tumor segments, bounding boxes, and whole images using either classic radiomics, autoencoder, or both. Feature selection was performed to generate radiomics signatures, which were used to train machine learning algorithms for tumor categorization. Models were evaluated using the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity and were statistically compared with histopathologically or follow-up-confirmed diagnosis. Results The model was developed on 1191 (mean age, 61 years ± 14 [SD]) female patients and externally validated on 50 (mean age, 55 years ± 15]). The development data set was divided into two parts: testing and training lesion segmentation (419 and 179 examinations) and lesion categorization (503 and 90 examinations). nnU-Net demonstrated precision and reproducibility in lesion segmentation in test set of data set 1 (median Dice score [DS]: 0.90 [IQR, 0.84-0.93]; P = .01) and data set 2 (median DS: 0.89 [IQR, 0.80-0.92]; P = .001). The best model, trained with 23 mixed features from tumor bounding boxes, achieved an AUC of 0.90 (95% CI: 0.83, 0.97), sensitivity of 81% (46 of 57; 95% CI: 70, 91), and specificity of 87% (39 of 45; 95% CI: 77, 87). No evidence of difference was found between model and human readers (AUC = 0.90 [95% CI: 0.83, 0.97] vs 0.83 [95% CI: 0.76, 0.90]; P = .55 and 0.90 vs 0.82 [95% CI: 0.75, 0.90]; P = .45) in tumor classification or between model and histopathologically or follow-up-confirmed diagnosis (AUC = 0.90 [95% CI: 0.83, 0.97] vs 1.00 [95% CI: 1.00,1.00]; P = .10). Conclusion Precise real-time US-based breast tumor categorization was developed by mixing classic radiomics and autoencoder-based features from tumor bounding boxes. ClinicalTrials.gov identifier: NCT04976257 Published under a CC BY 4.0 license. Supplemental material is available for this article. See also the editorial by Bahl in this issue.\",\"PeriodicalId\":20896,\"journal\":{\"name\":\"Radiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1148/radiol.232554\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1148/radiol.232554","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Combining Radiomics and Autoencoders to Distinguish Benign and Malignant Breast Tumors on US Images.
Background US is clinically established for breast imaging, but its diagnostic performance depends on operator experience. Computer-assisted (real-time) image analysis may help in overcoming this limitation. Purpose To develop precise real-time-capable US-based breast tumor categorization by combining classic radiomics and autoencoder-based features from automatically localized lesions. Materials and Methods A total of 1619 B-mode US images of breast tumors were retrospectively analyzed between April 2018 and January 2024. nnU-Net was trained for lesion segmentation. Features were extracted from tumor segments, bounding boxes, and whole images using either classic radiomics, autoencoder, or both. Feature selection was performed to generate radiomics signatures, which were used to train machine learning algorithms for tumor categorization. Models were evaluated using the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity and were statistically compared with histopathologically or follow-up-confirmed diagnosis. Results The model was developed on 1191 (mean age, 61 years ± 14 [SD]) female patients and externally validated on 50 (mean age, 55 years ± 15]). The development data set was divided into two parts: testing and training lesion segmentation (419 and 179 examinations) and lesion categorization (503 and 90 examinations). nnU-Net demonstrated precision and reproducibility in lesion segmentation in test set of data set 1 (median Dice score [DS]: 0.90 [IQR, 0.84-0.93]; P = .01) and data set 2 (median DS: 0.89 [IQR, 0.80-0.92]; P = .001). The best model, trained with 23 mixed features from tumor bounding boxes, achieved an AUC of 0.90 (95% CI: 0.83, 0.97), sensitivity of 81% (46 of 57; 95% CI: 70, 91), and specificity of 87% (39 of 45; 95% CI: 77, 87). No evidence of difference was found between model and human readers (AUC = 0.90 [95% CI: 0.83, 0.97] vs 0.83 [95% CI: 0.76, 0.90]; P = .55 and 0.90 vs 0.82 [95% CI: 0.75, 0.90]; P = .45) in tumor classification or between model and histopathologically or follow-up-confirmed diagnosis (AUC = 0.90 [95% CI: 0.83, 0.97] vs 1.00 [95% CI: 1.00,1.00]; P = .10). Conclusion Precise real-time US-based breast tumor categorization was developed by mixing classic radiomics and autoencoder-based features from tumor bounding boxes. ClinicalTrials.gov identifier: NCT04976257 Published under a CC BY 4.0 license. Supplemental material is available for this article. See also the editorial by Bahl in this issue.
期刊介绍:
Published regularly since 1923 by the Radiological Society of North America (RSNA), Radiology has long been recognized as the authoritative reference for the most current, clinically relevant and highest quality research in the field of radiology. Each month the journal publishes approximately 240 pages of peer-reviewed original research, authoritative reviews, well-balanced commentary on significant articles, and expert opinion on new techniques and technologies.
Radiology publishes cutting edge and impactful imaging research articles in radiology and medical imaging in order to help improve human health.