{"title":"通过相分离依赖性和非依赖性机制相互调控 m6A 修饰和 miRNA 生产机制","authors":"Songxiao Zhong, Xindi Li, Changhao Li, Haiyan Bai, Jingjing Chen, Lu Gan, Jiyun Zhu, Taerin Oh, Xingxing Yan, Jiaying Zhu, Niankui Li, Hisashi Koiwa, Thomas Meek, Xu Peng, Bin Yu, Zhonghui Zhang, Xiuren Zhang","doi":"10.1101/2024.08.31.610644","DOIUrl":null,"url":null,"abstract":"Methyltransferase complex (MTC) deposits N6-adenosine (m6A) onto RNA, whereas microprocessor produces miRNA. Whether and how these two distinct complexes cross-regulate each other has been poorly studied. Here we report that the MTC subunit B (MTB) tends to form insoluble condensates with poor activity, with its level monitored by 20S proteasome. Conversely, the microprocessor component SERRATE (SE) forms liquid-like condensates, which in turn promotes solubility and stability of MTB, leading to increased MTC activity. Consistently, the hypomorphic lines expressing SE variants, defective in MTC interaction or liquid-like phase behavior, exhibit reduced m6A level. Reciprocally, MTC can recruit microprocessor to MIRNA loci, prompting co-transcriptional cleavage of primary miRNA (pri-miRNAs) substrates. Additionally, pri-miRNAs carrying m6A modifications at their single-stranded basal regions are enriched by m6A readers, which retain microprocessor in the nucleoplasm for continuing processing. This reveals an unappreciated mechanism of phase separation in RNA modification and processing through MTC and microprocessor coordination.","PeriodicalId":501341,"journal":{"name":"bioRxiv - Plant Biology","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reciprocal regulation of m6A modification and miRNA production machineries via phase separation-dependent and -independent mechanisms\",\"authors\":\"Songxiao Zhong, Xindi Li, Changhao Li, Haiyan Bai, Jingjing Chen, Lu Gan, Jiyun Zhu, Taerin Oh, Xingxing Yan, Jiaying Zhu, Niankui Li, Hisashi Koiwa, Thomas Meek, Xu Peng, Bin Yu, Zhonghui Zhang, Xiuren Zhang\",\"doi\":\"10.1101/2024.08.31.610644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Methyltransferase complex (MTC) deposits N6-adenosine (m6A) onto RNA, whereas microprocessor produces miRNA. Whether and how these two distinct complexes cross-regulate each other has been poorly studied. Here we report that the MTC subunit B (MTB) tends to form insoluble condensates with poor activity, with its level monitored by 20S proteasome. Conversely, the microprocessor component SERRATE (SE) forms liquid-like condensates, which in turn promotes solubility and stability of MTB, leading to increased MTC activity. Consistently, the hypomorphic lines expressing SE variants, defective in MTC interaction or liquid-like phase behavior, exhibit reduced m6A level. Reciprocally, MTC can recruit microprocessor to MIRNA loci, prompting co-transcriptional cleavage of primary miRNA (pri-miRNAs) substrates. Additionally, pri-miRNAs carrying m6A modifications at their single-stranded basal regions are enriched by m6A readers, which retain microprocessor in the nucleoplasm for continuing processing. This reveals an unappreciated mechanism of phase separation in RNA modification and processing through MTC and microprocessor coordination.\",\"PeriodicalId\":501341,\"journal\":{\"name\":\"bioRxiv - Plant Biology\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Plant Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.08.31.610644\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.31.610644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reciprocal regulation of m6A modification and miRNA production machineries via phase separation-dependent and -independent mechanisms
Methyltransferase complex (MTC) deposits N6-adenosine (m6A) onto RNA, whereas microprocessor produces miRNA. Whether and how these two distinct complexes cross-regulate each other has been poorly studied. Here we report that the MTC subunit B (MTB) tends to form insoluble condensates with poor activity, with its level monitored by 20S proteasome. Conversely, the microprocessor component SERRATE (SE) forms liquid-like condensates, which in turn promotes solubility and stability of MTB, leading to increased MTC activity. Consistently, the hypomorphic lines expressing SE variants, defective in MTC interaction or liquid-like phase behavior, exhibit reduced m6A level. Reciprocally, MTC can recruit microprocessor to MIRNA loci, prompting co-transcriptional cleavage of primary miRNA (pri-miRNAs) substrates. Additionally, pri-miRNAs carrying m6A modifications at their single-stranded basal regions are enriched by m6A readers, which retain microprocessor in the nucleoplasm for continuing processing. This reveals an unappreciated mechanism of phase separation in RNA modification and processing through MTC and microprocessor coordination.