信号处理中四元数特征值问题的迭代算法

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Qiankun Diao;Jinlan Liu;Naimin Zhang;Dongpo Xu
{"title":"信号处理中四元数特征值问题的迭代算法","authors":"Qiankun Diao;Jinlan Liu;Naimin Zhang;Dongpo Xu","doi":"10.1109/LSP.2024.3459640","DOIUrl":null,"url":null,"abstract":"This letter proposes a quaternion projection gradient ascent (QPGA) iterative algorithm based on generalized \n<inline-formula><tex-math>$\\mathbb {HR}$</tex-math></inline-formula>\n calculus for computing the principal eigenvalues and its eigenvectors of quaternion Hermitian matrices. We also prove the convergence of the QPGA algorithm, demonstrating that the estimated sequence of principal eigenvalues is monotonically increasing. Numerical experiments demonstrate the superiority of the proposed iterative method over traditional algebraic methods in terms of accuracy and speed, as well as the application of principal eigenvalues and their eigenvectors obtained by the QPGA algorithm in denoising with quaternion principal component analysis and quaternion least mean square (QLMS) algorithms in filtering fetal electrocardiograms. Overall, the fast quaternion eigenvalue solving method provides a novel and effective technical tool for quaternion signal processing.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Iterative Algorithm for Quaternion Eigenvalue Problems in Signal Processing\",\"authors\":\"Qiankun Diao;Jinlan Liu;Naimin Zhang;Dongpo Xu\",\"doi\":\"10.1109/LSP.2024.3459640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter proposes a quaternion projection gradient ascent (QPGA) iterative algorithm based on generalized \\n<inline-formula><tex-math>$\\\\mathbb {HR}$</tex-math></inline-formula>\\n calculus for computing the principal eigenvalues and its eigenvectors of quaternion Hermitian matrices. We also prove the convergence of the QPGA algorithm, demonstrating that the estimated sequence of principal eigenvalues is monotonically increasing. Numerical experiments demonstrate the superiority of the proposed iterative method over traditional algebraic methods in terms of accuracy and speed, as well as the application of principal eigenvalues and their eigenvectors obtained by the QPGA algorithm in denoising with quaternion principal component analysis and quaternion least mean square (QLMS) algorithms in filtering fetal electrocardiograms. Overall, the fast quaternion eigenvalue solving method provides a novel and effective technical tool for quaternion signal processing.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10678924/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10678924/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

这封信提出了一种基于广义 $\mathbb {HR}$ 微积分的四元数投影梯度上升(QPGA)迭代算法,用于计算四元数赫米矩阵的主特征值及其特征向量。我们还证明了 QPGA 算法的收敛性,证明估计的主特征值序列是单调递增的。数值实验证明了所提出的迭代法在准确性和速度方面优于传统的代数方法,并证明了 QPGA 算法得到的主特征值及其特征向量在用四元数主成分分析法去噪和用四元数最小均方(QLMS)算法过滤胎儿心电图中的应用。总之,快速四元数特征值求解方法为四元数信号处理提供了一种新颖有效的技术工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Iterative Algorithm for Quaternion Eigenvalue Problems in Signal Processing
This letter proposes a quaternion projection gradient ascent (QPGA) iterative algorithm based on generalized $\mathbb {HR}$ calculus for computing the principal eigenvalues and its eigenvectors of quaternion Hermitian matrices. We also prove the convergence of the QPGA algorithm, demonstrating that the estimated sequence of principal eigenvalues is monotonically increasing. Numerical experiments demonstrate the superiority of the proposed iterative method over traditional algebraic methods in terms of accuracy and speed, as well as the application of principal eigenvalues and their eigenvectors obtained by the QPGA algorithm in denoising with quaternion principal component analysis and quaternion least mean square (QLMS) algorithms in filtering fetal electrocardiograms. Overall, the fast quaternion eigenvalue solving method provides a novel and effective technical tool for quaternion signal processing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信