利用范德华接触实现高电流密度和低接触电阻的单极 p 型单层 WSe2 场效应晶体管

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Miaomiao Li, Xinyu Zhang, Zimei Zhang, Gang Peng, Zhihong Zhu, Jia Li, Shiqiao Qin, Mengjian Zhu
{"title":"利用范德华接触实现高电流密度和低接触电阻的单极 p 型单层 WSe2 场效应晶体管","authors":"Miaomiao Li, Xinyu Zhang, Zimei Zhang, Gang Peng, Zhihong Zhu, Jia Li, Shiqiao Qin, Mengjian Zhu","doi":"10.1007/s12274-024-6942-5","DOIUrl":null,"url":null,"abstract":"<p>High-performance field-effect transistors (FETs) based on atomically thin two-dimensional (2D) semiconductors have demonstrated great promise in post-Moore integrated circuits. However, unipolar p-type 2D semiconductor transistors yet remain challenging and suffer from low saturation current density (less than 10 µA·µm<sup>−1</sup>) and high contact resistance (larger than 100 kΩ·µm), mainly limited by the Schottky barrier induced by the mismatch of the work-functions and the Fermi level pinning at the metal contact interfaces. Here, we overcome these two obstacles through van der Waals (vdW) integration of high work-function metal palladium (Pd) as the contacts onto monolayer WSe<sub>2</sub> grown by chemical vapor deposition (CVD) method. We demonstrate unipolar p-type monolayer WSe<sub>2</sub> FETs with superior device performance: room temperature on-state current density exceeding 100 µA·µm<sup>−1</sup>, contact resistance of 12 kΩ·µm, on/off ratio over 10<sup>7</sup>, and field-effect hole mobility of ~ 103 cm<sup>2</sup>·V<sup>−1</sup>·s<sup>−1</sup>. Electrical transport measurements reveal that the Fermi level pinning effect is completely effectively eliminated in monolayer WSe<sub>2</sub> with vdW Pd contacts, leading to a Schottky barrier-free Ohmic contact at the metal-semiconductor junctions. Combining the advantages of large-scale vdW contact strategy and CVD growth, our results pave the way for wafer-scale fabrication of complementary-metal-oxide-semiconductor (CMOS) logic circuits based on atomically thin 2D semiconductors.\n</p>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"15 1","pages":""},"PeriodicalIF":9.5000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unipolar p-type monolayer WSe2 field-effect transistors with high current density and low contact resistance enabled by van der Waals contacts\",\"authors\":\"Miaomiao Li, Xinyu Zhang, Zimei Zhang, Gang Peng, Zhihong Zhu, Jia Li, Shiqiao Qin, Mengjian Zhu\",\"doi\":\"10.1007/s12274-024-6942-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>High-performance field-effect transistors (FETs) based on atomically thin two-dimensional (2D) semiconductors have demonstrated great promise in post-Moore integrated circuits. However, unipolar p-type 2D semiconductor transistors yet remain challenging and suffer from low saturation current density (less than 10 µA·µm<sup>−1</sup>) and high contact resistance (larger than 100 kΩ·µm), mainly limited by the Schottky barrier induced by the mismatch of the work-functions and the Fermi level pinning at the metal contact interfaces. Here, we overcome these two obstacles through van der Waals (vdW) integration of high work-function metal palladium (Pd) as the contacts onto monolayer WSe<sub>2</sub> grown by chemical vapor deposition (CVD) method. We demonstrate unipolar p-type monolayer WSe<sub>2</sub> FETs with superior device performance: room temperature on-state current density exceeding 100 µA·µm<sup>−1</sup>, contact resistance of 12 kΩ·µm, on/off ratio over 10<sup>7</sup>, and field-effect hole mobility of ~ 103 cm<sup>2</sup>·V<sup>−1</sup>·s<sup>−1</sup>. Electrical transport measurements reveal that the Fermi level pinning effect is completely effectively eliminated in monolayer WSe<sub>2</sub> with vdW Pd contacts, leading to a Schottky barrier-free Ohmic contact at the metal-semiconductor junctions. Combining the advantages of large-scale vdW contact strategy and CVD growth, our results pave the way for wafer-scale fabrication of complementary-metal-oxide-semiconductor (CMOS) logic circuits based on atomically thin 2D semiconductors.\\n</p>\",\"PeriodicalId\":713,\"journal\":{\"name\":\"Nano Research\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s12274-024-6942-5\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12274-024-6942-5","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

基于原子薄二维(2D)半导体的高性能场效应晶体管(FET)在后摩尔集成电路中大有可为。然而,单极对型二维半导体晶体管仍面临挑战,饱和电流密度低(小于 10 µA-µm-1),接触电阻大(大于 100 kΩ-µm),主要受限于工作函数不匹配和金属接触界面费米级针销所引起的肖特基势垒。在这里,我们通过范德华(vdW)集成高功函数金属钯(Pd),将其作为触点,通过化学气相沉积(CVD)方法生长到单层 WSe2 上,从而克服了这两个障碍。我们展示了具有卓越器件性能的单极 p 型单层 WSe2 FET:室温导通电流密度超过 100 µA-µm-1,接触电阻为 12 kΩ-µm,导通/关断比超过 107,场效应空穴迁移率约为 103 cm2-V-1-s-1。电传输测量结果表明,在具有 vdW Pd 触点的单层 WSe2 中,费米级钉扎效应被完全有效地消除,从而在金属-半导体结点上形成了肖特基无势垒欧姆接触。结合大规模 vdW 接触策略和 CVD 生长的优势,我们的研究成果为在晶圆级制造基于原子薄二维半导体的互补金属氧化物半导体 (CMOS) 逻辑电路铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unipolar p-type monolayer WSe2 field-effect transistors with high current density and low contact resistance enabled by van der Waals contacts

Unipolar p-type monolayer WSe2 field-effect transistors with high current density and low contact resistance enabled by van der Waals contacts

High-performance field-effect transistors (FETs) based on atomically thin two-dimensional (2D) semiconductors have demonstrated great promise in post-Moore integrated circuits. However, unipolar p-type 2D semiconductor transistors yet remain challenging and suffer from low saturation current density (less than 10 µA·µm−1) and high contact resistance (larger than 100 kΩ·µm), mainly limited by the Schottky barrier induced by the mismatch of the work-functions and the Fermi level pinning at the metal contact interfaces. Here, we overcome these two obstacles through van der Waals (vdW) integration of high work-function metal palladium (Pd) as the contacts onto monolayer WSe2 grown by chemical vapor deposition (CVD) method. We demonstrate unipolar p-type monolayer WSe2 FETs with superior device performance: room temperature on-state current density exceeding 100 µA·µm−1, contact resistance of 12 kΩ·µm, on/off ratio over 107, and field-effect hole mobility of ~ 103 cm2·V−1·s−1. Electrical transport measurements reveal that the Fermi level pinning effect is completely effectively eliminated in monolayer WSe2 with vdW Pd contacts, leading to a Schottky barrier-free Ohmic contact at the metal-semiconductor junctions. Combining the advantages of large-scale vdW contact strategy and CVD growth, our results pave the way for wafer-scale fabrication of complementary-metal-oxide-semiconductor (CMOS) logic circuits based on atomically thin 2D semiconductors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Research
Nano Research 化学-材料科学:综合
CiteScore
14.30
自引率
11.10%
发文量
2574
审稿时长
1.7 months
期刊介绍: Nano Research is a peer-reviewed, international and interdisciplinary research journal that focuses on all aspects of nanoscience and nanotechnology. It solicits submissions in various topical areas, from basic aspects of nanoscale materials to practical applications. The journal publishes articles on synthesis, characterization, and manipulation of nanomaterials; nanoscale physics, electrical transport, and quantum physics; scanning probe microscopy and spectroscopy; nanofluidics; nanosensors; nanoelectronics and molecular electronics; nano-optics, nano-optoelectronics, and nano-photonics; nanomagnetics; nanobiotechnology and nanomedicine; and nanoscale modeling and simulations. Nano Research offers readers a combination of authoritative and comprehensive Reviews, original cutting-edge research in Communication and Full Paper formats. The journal also prioritizes rapid review to ensure prompt publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信