利用基于迈克尔逊干涉仪的光学盐度计现场测量深海盐度

IF 2.7 3区 地球科学 Q1 ENGINEERING, MARINE
Shuqing Yang, Jie Xu, Lanting Ji, Qingquan Sun, Muzi Zhang, Shanshan Zhao, Chi Wu
{"title":"利用基于迈克尔逊干涉仪的光学盐度计现场测量深海盐度","authors":"Shuqing Yang, Jie Xu, Lanting Ji, Qingquan Sun, Muzi Zhang, Shanshan Zhao, Chi Wu","doi":"10.3390/jmse12091569","DOIUrl":null,"url":null,"abstract":"Ocean salinity plays an important role in oceanographic research as one of the fundamental parameters. An optical salinometer based on the Michelson interferometer (MI) suitable for in situ measurement in deep-sea environments is proposed in this work, and it features real-time calibration and multichannel multiplexing using the frequency modulated continuous wave (FMCW) technique. The symmetrical sapphire structure used to withstand deep-sea pressure can not only achieve automatic temperature compensation, but also counteract the changes in optical path length under deep-sea pressure. A model formula suitable for optical salinity demodulation is proposed through the nonlinear least squares fitting method. In vertical profile testing, the optical salinometer demonstrated remarkable tracking performance, achieving an error of less than 0.001 psu. The sensor displays a stable salinity demodulation error within ±0.002 psu during a three-month long-term test at a depth of 4000 m. High stability and resolution make this optical salinometer have broad development prospects in ocean observation.","PeriodicalId":16168,"journal":{"name":"Journal of Marine Science and Engineering","volume":"7 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Situ Measurement of Deep-Sea Salinity Using Optical Salinometer Based on Michelson Interferometer\",\"authors\":\"Shuqing Yang, Jie Xu, Lanting Ji, Qingquan Sun, Muzi Zhang, Shanshan Zhao, Chi Wu\",\"doi\":\"10.3390/jmse12091569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ocean salinity plays an important role in oceanographic research as one of the fundamental parameters. An optical salinometer based on the Michelson interferometer (MI) suitable for in situ measurement in deep-sea environments is proposed in this work, and it features real-time calibration and multichannel multiplexing using the frequency modulated continuous wave (FMCW) technique. The symmetrical sapphire structure used to withstand deep-sea pressure can not only achieve automatic temperature compensation, but also counteract the changes in optical path length under deep-sea pressure. A model formula suitable for optical salinity demodulation is proposed through the nonlinear least squares fitting method. In vertical profile testing, the optical salinometer demonstrated remarkable tracking performance, achieving an error of less than 0.001 psu. The sensor displays a stable salinity demodulation error within ±0.002 psu during a three-month long-term test at a depth of 4000 m. High stability and resolution make this optical salinometer have broad development prospects in ocean observation.\",\"PeriodicalId\":16168,\"journal\":{\"name\":\"Journal of Marine Science and Engineering\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Marine Science and Engineering\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/jmse12091569\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Science and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/jmse12091569","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

摘要

海洋盐度作为基本参数之一,在海洋学研究中发挥着重要作用。本研究提出了一种基于迈克尔逊干涉仪(MI)的光学盐度计,适用于深海环境中的原位测量,其特点是采用频率调制连续波(FMCW)技术进行实时校准和多通道复用。采用可承受深海压力的对称蓝宝石结构,不仅能实现温度自动补偿,还能抵消深海压力下光路长度的变化。通过非线性最小二乘拟合方法,提出了适合光学盐度解调的模型公式。在垂直剖面测试中,光学盐度计表现出卓越的跟踪性能,误差小于 0.001 psu。高稳定性和高分辨率使该光学盐度计在海洋观测领域具有广阔的发展前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In Situ Measurement of Deep-Sea Salinity Using Optical Salinometer Based on Michelson Interferometer
Ocean salinity plays an important role in oceanographic research as one of the fundamental parameters. An optical salinometer based on the Michelson interferometer (MI) suitable for in situ measurement in deep-sea environments is proposed in this work, and it features real-time calibration and multichannel multiplexing using the frequency modulated continuous wave (FMCW) technique. The symmetrical sapphire structure used to withstand deep-sea pressure can not only achieve automatic temperature compensation, but also counteract the changes in optical path length under deep-sea pressure. A model formula suitable for optical salinity demodulation is proposed through the nonlinear least squares fitting method. In vertical profile testing, the optical salinometer demonstrated remarkable tracking performance, achieving an error of less than 0.001 psu. The sensor displays a stable salinity demodulation error within ±0.002 psu during a three-month long-term test at a depth of 4000 m. High stability and resolution make this optical salinometer have broad development prospects in ocean observation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Marine Science and Engineering
Journal of Marine Science and Engineering Engineering-Ocean Engineering
CiteScore
4.40
自引率
20.70%
发文量
1640
审稿时长
18.09 days
期刊介绍: Journal of Marine Science and Engineering (JMSE; ISSN 2077-1312) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to marine science and engineering. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信