含有 EGCG 的骨再生材料的最新进展

IF 6.1 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS
Yaoye Zhao, Guoding Cao, Zixin Wang, Desheng Liu, Liling Ren, Dongyang Ma
{"title":"含有 EGCG 的骨再生材料的最新进展","authors":"Yaoye Zhao, Guoding Cao, Zixin Wang, Desheng Liu, Liling Ren, Dongyang Ma","doi":"10.1039/d4tb00604f","DOIUrl":null,"url":null,"abstract":"Epigallocatechin-3-gallate (EGCG) is the most effective active ingredient in tea polyphenols and belongs to the category of catechins. EGCG has excellent antioxidant activity, anti-inflammatory, osteogenesis-promoting, and antibacterial properties, and has been widely studied in orthopedic diseases such as osteoporosis. To reach the lesion site, achieve sustained release, promote osteogenesis, regulate macrophage polarization, and improve the physical properties of materials, EGCG needs to be cross-linked or incorporated in bone regeneration materials. This article reviews the application of bone regeneration materials combined with EGCG, including natural polymer bone regeneration materials, synthetic polymer bone regeneration materials, bioceramic bone regeneration materials, metal bone regeneration materials, hydrogel bone regeneration materials and metal–EGCG networks. In addition, the fabrication methods for the regenerated scaffolds are also elaborated in the text. To sum up, it reveals the excellent development potential of materials containing EGCG and the shortcomings of current research, which will provide important reference for the future exploration of bone regeneration materials containing EGCG.","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The recent progress of bone regeneration materials containing EGCG\",\"authors\":\"Yaoye Zhao, Guoding Cao, Zixin Wang, Desheng Liu, Liling Ren, Dongyang Ma\",\"doi\":\"10.1039/d4tb00604f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Epigallocatechin-3-gallate (EGCG) is the most effective active ingredient in tea polyphenols and belongs to the category of catechins. EGCG has excellent antioxidant activity, anti-inflammatory, osteogenesis-promoting, and antibacterial properties, and has been widely studied in orthopedic diseases such as osteoporosis. To reach the lesion site, achieve sustained release, promote osteogenesis, regulate macrophage polarization, and improve the physical properties of materials, EGCG needs to be cross-linked or incorporated in bone regeneration materials. This article reviews the application of bone regeneration materials combined with EGCG, including natural polymer bone regeneration materials, synthetic polymer bone regeneration materials, bioceramic bone regeneration materials, metal bone regeneration materials, hydrogel bone regeneration materials and metal–EGCG networks. In addition, the fabrication methods for the regenerated scaffolds are also elaborated in the text. To sum up, it reveals the excellent development potential of materials containing EGCG and the shortcomings of current research, which will provide important reference for the future exploration of bone regeneration materials containing EGCG.\",\"PeriodicalId\":83,\"journal\":{\"name\":\"Journal of Materials Chemistry B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1039/d4tb00604f\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1039/d4tb00604f","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

表没食子儿茶素-3-棓酸盐(EGCG)是茶多酚中最有效的活性成分,属于儿茶素类。EGCG 具有出色的抗氧化活性、抗炎、促进骨生成和抗菌特性,已被广泛用于骨科疾病(如骨质疏松症)的研究。为了到达病变部位、实现持续释放、促进成骨、调节巨噬细胞极化以及改善材料的物理性能,EGCG 需要交联或加入骨再生材料中。本文综述了与 EGCG 结合的骨再生材料的应用,包括天然高分子骨再生材料、合成高分子骨再生材料、生物陶瓷骨再生材料、金属骨再生材料、水凝胶骨再生材料和金属-EGCG 网络。此外,文中还阐述了再生支架的制作方法。总之,该研究揭示了含EGCG材料的良好发展潜力和目前研究的不足之处,为今后探索含EGCG的骨再生材料提供了重要参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The recent progress of bone regeneration materials containing EGCG

The recent progress of bone regeneration materials containing EGCG
Epigallocatechin-3-gallate (EGCG) is the most effective active ingredient in tea polyphenols and belongs to the category of catechins. EGCG has excellent antioxidant activity, anti-inflammatory, osteogenesis-promoting, and antibacterial properties, and has been widely studied in orthopedic diseases such as osteoporosis. To reach the lesion site, achieve sustained release, promote osteogenesis, regulate macrophage polarization, and improve the physical properties of materials, EGCG needs to be cross-linked or incorporated in bone regeneration materials. This article reviews the application of bone regeneration materials combined with EGCG, including natural polymer bone regeneration materials, synthetic polymer bone regeneration materials, bioceramic bone regeneration materials, metal bone regeneration materials, hydrogel bone regeneration materials and metal–EGCG networks. In addition, the fabrication methods for the regenerated scaffolds are also elaborated in the text. To sum up, it reveals the excellent development potential of materials containing EGCG and the shortcomings of current research, which will provide important reference for the future exploration of bone regeneration materials containing EGCG.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry B
Journal of Materials Chemistry B MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
11.50
自引率
4.30%
发文量
866
期刊介绍: Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive: Antifouling coatings Biocompatible materials Bioelectronics Bioimaging Biomimetics Biomineralisation Bionics Biosensors Diagnostics Drug delivery Gene delivery Immunobiology Nanomedicine Regenerative medicine & Tissue engineering Scaffolds Soft robotics Stem cells Therapeutic devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信