Seungdae Oh, Hiep T. Nguyen, Kehinde Shola Obayomi, Sharf Ilahi Siddiqui
{"title":"评估真菌酶处理药物混合物过程中形成的转化副产物的环境风险潜力","authors":"Seungdae Oh, Hiep T. Nguyen, Kehinde Shola Obayomi, Sharf Ilahi Siddiqui","doi":"10.1016/j.jiec.2024.08.015","DOIUrl":null,"url":null,"abstract":"The present study advances our understanding of the ecological risk potential associated with pharmaceutical mixtures treated with fungal enzymes. We optimized a submerged bioreactor for fungal enzyme production by testing three fungal species and adjusting the organic loading rate and retention time, yielding enzyme activities exceeding 20 U/L. These fungal enzymes effectively reduced the half-lives of tetracycline and sulfamethoxazole to less than 3 hours in a mixture of tetracycline and sulfamethoxazole, using syringaldehyde as an optimized mediator. Analytical chemistry assessments identified transformation products (TPs) generated in situ from the mixture, revealing three novel transformation pathways. Quantitative structure–activity relationship analysis highlighted two TPs with heightened toxicity and prolonged persistence compared to their parent compound. Furthermore, these TPs exhibited distinct environmental mobility characteristics at the liquid–solid interface. Our combined experimental and computational framework allowed for a systematic screening of pharmaceutical residues, considering aspects such as toxicity, mobility, persistence, bioaccumulation, and removal. This approach has practical implications for prioritizing target pollutants in subsequent monitoring and environmental risk assessments.","PeriodicalId":363,"journal":{"name":"Journal of Industrial and Engineering Chemistry","volume":"26 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing the environmental risk potential of transformation byproducts formed during fungal enzymatic treatment of a pharmaceutical mixture\",\"authors\":\"Seungdae Oh, Hiep T. Nguyen, Kehinde Shola Obayomi, Sharf Ilahi Siddiqui\",\"doi\":\"10.1016/j.jiec.2024.08.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study advances our understanding of the ecological risk potential associated with pharmaceutical mixtures treated with fungal enzymes. We optimized a submerged bioreactor for fungal enzyme production by testing three fungal species and adjusting the organic loading rate and retention time, yielding enzyme activities exceeding 20 U/L. These fungal enzymes effectively reduced the half-lives of tetracycline and sulfamethoxazole to less than 3 hours in a mixture of tetracycline and sulfamethoxazole, using syringaldehyde as an optimized mediator. Analytical chemistry assessments identified transformation products (TPs) generated in situ from the mixture, revealing three novel transformation pathways. Quantitative structure–activity relationship analysis highlighted two TPs with heightened toxicity and prolonged persistence compared to their parent compound. Furthermore, these TPs exhibited distinct environmental mobility characteristics at the liquid–solid interface. Our combined experimental and computational framework allowed for a systematic screening of pharmaceutical residues, considering aspects such as toxicity, mobility, persistence, bioaccumulation, and removal. This approach has practical implications for prioritizing target pollutants in subsequent monitoring and environmental risk assessments.\",\"PeriodicalId\":363,\"journal\":{\"name\":\"Journal of Industrial and Engineering Chemistry\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial and Engineering Chemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jiec.2024.08.015\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial and Engineering Chemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jiec.2024.08.015","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Assessing the environmental risk potential of transformation byproducts formed during fungal enzymatic treatment of a pharmaceutical mixture
The present study advances our understanding of the ecological risk potential associated with pharmaceutical mixtures treated with fungal enzymes. We optimized a submerged bioreactor for fungal enzyme production by testing three fungal species and adjusting the organic loading rate and retention time, yielding enzyme activities exceeding 20 U/L. These fungal enzymes effectively reduced the half-lives of tetracycline and sulfamethoxazole to less than 3 hours in a mixture of tetracycline and sulfamethoxazole, using syringaldehyde as an optimized mediator. Analytical chemistry assessments identified transformation products (TPs) generated in situ from the mixture, revealing three novel transformation pathways. Quantitative structure–activity relationship analysis highlighted two TPs with heightened toxicity and prolonged persistence compared to their parent compound. Furthermore, these TPs exhibited distinct environmental mobility characteristics at the liquid–solid interface. Our combined experimental and computational framework allowed for a systematic screening of pharmaceutical residues, considering aspects such as toxicity, mobility, persistence, bioaccumulation, and removal. This approach has practical implications for prioritizing target pollutants in subsequent monitoring and environmental risk assessments.
期刊介绍:
Journal of Industrial and Engineering Chemistry is published monthly in English by the Korean Society of Industrial and Engineering Chemistry. JIEC brings together multidisciplinary interests in one journal and is to disseminate information on all aspects of research and development in industrial and engineering chemistry. Contributions in the form of research articles, short communications, notes and reviews are considered for publication. The editors welcome original contributions that have not been and are not to be published elsewhere. Instruction to authors and a manuscript submissions form are printed at the end of each issue. Bulk reprints of individual articles can be ordered. This publication is partially supported by Korea Research Foundation and the Korean Federation of Science and Technology Societies.