{"title":"基于低级特征增强和注意机制的图像分类","authors":"Yong Zhang, Xueqin Li, Wenyun Chen, Ying Zang","doi":"10.1007/s11063-024-11680-3","DOIUrl":null,"url":null,"abstract":"<p>Deep learning-based image classification networks heavily rely on the extracted features. However, as the model becomes deeper, important features may be lost, resulting in decreased accuracy. To tackle this issue, this paper proposes an image classification method that enhances low-level features and incorporates an attention mechanism. The proposed method employs EfficientNet as the backbone network for feature extraction. Firstly, the Feature Enhancement Module quantifies and statistically processes low-level features from shallow layers, thereby enhancing the feature information. Secondly, the Convolutional Block Attention Module enhances the high-level features to improve the extraction of global features. Finally, the enhanced low-level features and global features are fused to supplement low-resolution global features with high-resolution details, further improving the model’s image classification ability. Experimental results illustrate that the proposed method achieves a Top-1 classification accuracy of 86.49% and a Top-5 classification accuracy of 96.90% on the ETH-Food101 dataset, 86.99% and 97.24% on the VireoFood-172 dataset, and 70.99% and 92.73% on the UEC-256 dataset. These results demonstrate that the proposed method outperforms existing methods in terms of classification performance.</p>","PeriodicalId":51144,"journal":{"name":"Neural Processing Letters","volume":"9 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image Classification Based on Low-Level Feature Enhancement and Attention Mechanism\",\"authors\":\"Yong Zhang, Xueqin Li, Wenyun Chen, Ying Zang\",\"doi\":\"10.1007/s11063-024-11680-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Deep learning-based image classification networks heavily rely on the extracted features. However, as the model becomes deeper, important features may be lost, resulting in decreased accuracy. To tackle this issue, this paper proposes an image classification method that enhances low-level features and incorporates an attention mechanism. The proposed method employs EfficientNet as the backbone network for feature extraction. Firstly, the Feature Enhancement Module quantifies and statistically processes low-level features from shallow layers, thereby enhancing the feature information. Secondly, the Convolutional Block Attention Module enhances the high-level features to improve the extraction of global features. Finally, the enhanced low-level features and global features are fused to supplement low-resolution global features with high-resolution details, further improving the model’s image classification ability. Experimental results illustrate that the proposed method achieves a Top-1 classification accuracy of 86.49% and a Top-5 classification accuracy of 96.90% on the ETH-Food101 dataset, 86.99% and 97.24% on the VireoFood-172 dataset, and 70.99% and 92.73% on the UEC-256 dataset. These results demonstrate that the proposed method outperforms existing methods in terms of classification performance.</p>\",\"PeriodicalId\":51144,\"journal\":{\"name\":\"Neural Processing Letters\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Processing Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11063-024-11680-3\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11063-024-11680-3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Image Classification Based on Low-Level Feature Enhancement and Attention Mechanism
Deep learning-based image classification networks heavily rely on the extracted features. However, as the model becomes deeper, important features may be lost, resulting in decreased accuracy. To tackle this issue, this paper proposes an image classification method that enhances low-level features and incorporates an attention mechanism. The proposed method employs EfficientNet as the backbone network for feature extraction. Firstly, the Feature Enhancement Module quantifies and statistically processes low-level features from shallow layers, thereby enhancing the feature information. Secondly, the Convolutional Block Attention Module enhances the high-level features to improve the extraction of global features. Finally, the enhanced low-level features and global features are fused to supplement low-resolution global features with high-resolution details, further improving the model’s image classification ability. Experimental results illustrate that the proposed method achieves a Top-1 classification accuracy of 86.49% and a Top-5 classification accuracy of 96.90% on the ETH-Food101 dataset, 86.99% and 97.24% on the VireoFood-172 dataset, and 70.99% and 92.73% on the UEC-256 dataset. These results demonstrate that the proposed method outperforms existing methods in terms of classification performance.
期刊介绍:
Neural Processing Letters is an international journal publishing research results and innovative ideas on all aspects of artificial neural networks. Coverage includes theoretical developments, biological models, new formal modes, learning, applications, software and hardware developments, and prospective researches.
The journal promotes fast exchange of information in the community of neural network researchers and users. The resurgence of interest in the field of artificial neural networks since the beginning of the 1980s is coupled to tremendous research activity in specialized or multidisciplinary groups. Research, however, is not possible without good communication between people and the exchange of information, especially in a field covering such different areas; fast communication is also a key aspect, and this is the reason for Neural Processing Letters