电阻电路中的分形:斐波纳契电阻网络

IF 1.6 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Petrus H. R. dos Anjos, Fernando A. Oliveira, David L. Azevedo
{"title":"电阻电路中的分形:斐波纳契电阻网络","authors":"Petrus H. R. dos Anjos,&nbsp;Fernando A. Oliveira,&nbsp;David L. Azevedo","doi":"10.1140/epjb/s10051-024-00750-z","DOIUrl":null,"url":null,"abstract":"<p>We propose two new kinds of infinite resistor networks based on the Fibonacci sequence: a serial association of resistor sets connected in parallel (type 1) or a parallel association of resistor sets connected in series (type 2). We show that the sequence of the network’s equivalent resistance converges uniformly in the parameter <span>\\(\\alpha =\\frac{r_2}{r_1} \\in [0,+\\infty )\\)</span>, where <span>\\(r_1\\)</span> and <span>\\(r_2\\)</span> are the first and second resistors in the network. We also show that these networks exhibit self-similarity and scale invariance, which mimics a self-similar fractal. We also provide some generalizations, including resistor networks based on high-order Fibonacci sequences and other recursive combinatorial sequences.</p>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"97 8","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractality in resistive circuits: the Fibonacci resistor networks\",\"authors\":\"Petrus H. R. dos Anjos,&nbsp;Fernando A. Oliveira,&nbsp;David L. Azevedo\",\"doi\":\"10.1140/epjb/s10051-024-00750-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We propose two new kinds of infinite resistor networks based on the Fibonacci sequence: a serial association of resistor sets connected in parallel (type 1) or a parallel association of resistor sets connected in series (type 2). We show that the sequence of the network’s equivalent resistance converges uniformly in the parameter <span>\\\\(\\\\alpha =\\\\frac{r_2}{r_1} \\\\in [0,+\\\\infty )\\\\)</span>, where <span>\\\\(r_1\\\\)</span> and <span>\\\\(r_2\\\\)</span> are the first and second resistors in the network. We also show that these networks exhibit self-similarity and scale invariance, which mimics a self-similar fractal. We also provide some generalizations, including resistor networks based on high-order Fibonacci sequences and other recursive combinatorial sequences.</p>\",\"PeriodicalId\":787,\"journal\":{\"name\":\"The European Physical Journal B\",\"volume\":\"97 8\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal B\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjb/s10051-024-00750-z\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-024-00750-z","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们提出了两种基于斐波那契数列的新型无限电阻网络:并联电阻组的串联(类型 1)或串联电阻组的并联(类型 2)。我们证明了网络等效电阻的序列在参数 \(α =\frac{r_2}{r_1} \in [0,+\infty )\) 中均匀收敛,其中 \(r_1\) 和 \(r_2\) 是网络中的第一个和第二个电阻。我们还证明了这些网络具有自相似性和尺度不变性,这模仿了自相似分形。我们还提供了一些概括,包括基于高阶斐波那契序列和其他递归组合序列的电阻网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fractality in resistive circuits: the Fibonacci resistor networks

Fractality in resistive circuits: the Fibonacci resistor networks

Fractality in resistive circuits: the Fibonacci resistor networks

We propose two new kinds of infinite resistor networks based on the Fibonacci sequence: a serial association of resistor sets connected in parallel (type 1) or a parallel association of resistor sets connected in series (type 2). We show that the sequence of the network’s equivalent resistance converges uniformly in the parameter \(\alpha =\frac{r_2}{r_1} \in [0,+\infty )\), where \(r_1\) and \(r_2\) are the first and second resistors in the network. We also show that these networks exhibit self-similarity and scale invariance, which mimics a self-similar fractal. We also provide some generalizations, including resistor networks based on high-order Fibonacci sequences and other recursive combinatorial sequences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal B
The European Physical Journal B 物理-物理:凝聚态物理
CiteScore
2.80
自引率
6.20%
发文量
184
审稿时长
5.1 months
期刊介绍: Solid State and Materials; Mesoscopic and Nanoscale Systems; Computational Methods; Statistical and Nonlinear Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信