通过李对称分析的湍流射流理论:自由平面射流

IF 3.6 2区 工程技术 Q1 MECHANICS
Nadeem A. Malik, Fazle Hussain
{"title":"通过李对称分析的湍流射流理论:自由平面射流","authors":"Nadeem A. Malik, Fazle Hussain","doi":"10.1017/jfm.2024.527","DOIUrl":null,"url":null,"abstract":"A theory of incompressible turbulent plane jets (TPJs) is proposed by advancing an improved boundary layer approximation over the limiting classical – retaining more terms in the momentum balance equations. A pressure deficit inside the jet (with respect to the ambient) must exist due to transverse turbulence (Miller &amp; Comings, <jats:italic>J. Fluid Mech.</jats:italic>, vol. 3, 1957, pp. 1–16; Hussain &amp; Clarke, <jats:italic>Phys. Fluids</jats:italic>, vol. 20, 1977, pp. 1416–1426). Contrary to the universally accepted invariance of the total momentum flux <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005275_inline1.png\"/> <jats:tex-math>$J_T(x)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> (non-dimensionalized by its inlet value) as a function of the streamwise distance <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005275_inline2.png\"/> <jats:tex-math>$x$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, we prove that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005275_inline3.png\"/> <jats:tex-math>$J_T(x) &gt;1$</jats:tex-math> </jats:alternatives> </jats:inline-formula> – a condition that all TPJs must satisfy; surprisingly, prior theories and most experiments do not satisfy this condition. This motivated us to apply Lie symmetry analysis with translational and dilatational transformations of the modified equations (incorporating <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005275_inline4.png\"/> <jats:tex-math>$J_T&gt;1$</jats:tex-math> </jats:alternatives> </jats:inline-formula>), which yields scaling laws for key jet measures: the mean streamwise and transverse velocities <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005275_inline5.png\"/> <jats:tex-math>$U(x,y)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005275_inline6.png\"/> <jats:tex-math>$V(x,y)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, the turbulence intensities, the Reynolds shear stress <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005275_inline8.png\"/> <jats:tex-math>$-\\rho \\,\\overline {u'v'}(x,y)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, the mean pressure <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005275_inline9.png\"/> <jats:tex-math>$P(x,y)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, etc. Experiments satisfying <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005275_inline10.png\"/> <jats:tex-math>$J_T(x)&gt;1$</jats:tex-math> </jats:alternatives> </jats:inline-formula> validate our predictions for all jet measures, including, among others, the profiles of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005275_inline11.png\"/> <jats:tex-math>$U$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005275_inline12.png\"/> <jats:tex-math>$V$</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005275_inline14.png\"/> <jats:tex-math>$-\\rho \\,\\overline {u'v'}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We further predict <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005275_inline15.png\"/> <jats:tex-math>$U \\sim x^{-0.24}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005275_inline16.png\"/> <jats:tex-math>$V \\sim x^{-0.45}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005275_inline18.png\"/> <jats:tex-math>$-\\rho \\,\\overline {u'v'}\\sim x^{-0.69}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, the mass flux <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005275_inline19.png\"/> <jats:tex-math>$Q_m \\sim x^{0.55}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005275_inline20.png\"/> <jats:tex-math>$J_T$</jats:tex-math> </jats:alternatives> </jats:inline-formula> increases to approximately 1.5. Contrary to the classical linear jet spread, we find sublinear spread, with the jet half-width growing like <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005275_inline21.png\"/> <jats:tex-math>$b(x)\\sim x^{0.79}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, indicating a narrower jet. Our predictions differ notably from most results reported in the literature. These contradictions demand revisiting jet studies involving carefully designed facilities and boundary conditions, and highly resolved simulations.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"46 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Turbulent jet theory via Lie symmetry analysis: the free plane jet\",\"authors\":\"Nadeem A. Malik, Fazle Hussain\",\"doi\":\"10.1017/jfm.2024.527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A theory of incompressible turbulent plane jets (TPJs) is proposed by advancing an improved boundary layer approximation over the limiting classical – retaining more terms in the momentum balance equations. A pressure deficit inside the jet (with respect to the ambient) must exist due to transverse turbulence (Miller &amp; Comings, <jats:italic>J. Fluid Mech.</jats:italic>, vol. 3, 1957, pp. 1–16; Hussain &amp; Clarke, <jats:italic>Phys. Fluids</jats:italic>, vol. 20, 1977, pp. 1416–1426). Contrary to the universally accepted invariance of the total momentum flux <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005275_inline1.png\\\"/> <jats:tex-math>$J_T(x)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> (non-dimensionalized by its inlet value) as a function of the streamwise distance <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005275_inline2.png\\\"/> <jats:tex-math>$x$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, we prove that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005275_inline3.png\\\"/> <jats:tex-math>$J_T(x) &gt;1$</jats:tex-math> </jats:alternatives> </jats:inline-formula> – a condition that all TPJs must satisfy; surprisingly, prior theories and most experiments do not satisfy this condition. This motivated us to apply Lie symmetry analysis with translational and dilatational transformations of the modified equations (incorporating <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005275_inline4.png\\\"/> <jats:tex-math>$J_T&gt;1$</jats:tex-math> </jats:alternatives> </jats:inline-formula>), which yields scaling laws for key jet measures: the mean streamwise and transverse velocities <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005275_inline5.png\\\"/> <jats:tex-math>$U(x,y)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005275_inline6.png\\\"/> <jats:tex-math>$V(x,y)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, the turbulence intensities, the Reynolds shear stress <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005275_inline8.png\\\"/> <jats:tex-math>$-\\\\rho \\\\,\\\\overline {u'v'}(x,y)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, the mean pressure <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005275_inline9.png\\\"/> <jats:tex-math>$P(x,y)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, etc. Experiments satisfying <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005275_inline10.png\\\"/> <jats:tex-math>$J_T(x)&gt;1$</jats:tex-math> </jats:alternatives> </jats:inline-formula> validate our predictions for all jet measures, including, among others, the profiles of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005275_inline11.png\\\"/> <jats:tex-math>$U$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005275_inline12.png\\\"/> <jats:tex-math>$V$</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005275_inline14.png\\\"/> <jats:tex-math>$-\\\\rho \\\\,\\\\overline {u'v'}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We further predict <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005275_inline15.png\\\"/> <jats:tex-math>$U \\\\sim x^{-0.24}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005275_inline16.png\\\"/> <jats:tex-math>$V \\\\sim x^{-0.45}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005275_inline18.png\\\"/> <jats:tex-math>$-\\\\rho \\\\,\\\\overline {u'v'}\\\\sim x^{-0.69}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, the mass flux <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005275_inline19.png\\\"/> <jats:tex-math>$Q_m \\\\sim x^{0.55}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005275_inline20.png\\\"/> <jats:tex-math>$J_T$</jats:tex-math> </jats:alternatives> </jats:inline-formula> increases to approximately 1.5. Contrary to the classical linear jet spread, we find sublinear spread, with the jet half-width growing like <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005275_inline21.png\\\"/> <jats:tex-math>$b(x)\\\\sim x^{0.79}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, indicating a narrower jet. Our predictions differ notably from most results reported in the literature. These contradictions demand revisiting jet studies involving carefully designed facilities and boundary conditions, and highly resolved simulations.\",\"PeriodicalId\":15853,\"journal\":{\"name\":\"Journal of Fluid Mechanics\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/jfm.2024.527\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/jfm.2024.527","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

提出了不可压缩湍流平面喷流(TPJs)理论,该理论通过改进边界层近似来超越传统的限制--在动量平衡方程中保留更多的项。由于横向湍流,喷流内部(相对于环境)必须存在压力不足(Miller & Comings,《流体力学》,第 3 卷,1957 年,第 1-16 页;Hussain & Clarke,《流体物理学》,第 20 卷,1977 年,第 1416-1426 页)。与普遍接受的总动量通量 $J_T(x)$(非以其入口值为维度)作为流向距离 $x$ 的函数的不变性相反,我们证明了 $J_T(x) >1$ - 所有 TPJ 都必须满足的条件;令人惊讶的是,先前的理论和大多数实验都不满足这个条件。这促使我们对修正方程(包含 $J_T>1$ )进行平移和扩张变换,应用李对称分析,从而得出关键射流量度的缩放定律:平均流向和横向速度 $U(x,y)$ 和 $V(x,y)$ 、湍流强度、雷诺切应力 $-\rho \,\overline {u'v'}(x,y)$ 、平均压力 $P(x,y)$ 等。满足 $J_T(x)>1$ 的实验验证了我们对所有射流测量值的预测,其中包括 $U$ 、$V$ 和 $-\rho\overline {u'v'}$ 的剖面。我们进一步预测 $U \sim x^{-0.24}$ 、 $V \sim x^{-0.45}$ 、 $-\rho \,\overline {u'v'}\sim x^{-0.69}$ 、质量通量 $Q_m \sim x^{0.55}$ 以及 $J_T$ 会增加到大约 1.5。与经典的线性射流扩散相反,我们发现了亚线性扩散,射流半宽的增长速度为$b(x)\sim x^{0.79}$,表明射流更窄。我们的预测与文献报道的大多数结果明显不同。这些矛盾要求我们重新审视涉及精心设计的设施和边界条件以及高分辨率模拟的射流研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Turbulent jet theory via Lie symmetry analysis: the free plane jet
A theory of incompressible turbulent plane jets (TPJs) is proposed by advancing an improved boundary layer approximation over the limiting classical – retaining more terms in the momentum balance equations. A pressure deficit inside the jet (with respect to the ambient) must exist due to transverse turbulence (Miller & Comings, J. Fluid Mech., vol. 3, 1957, pp. 1–16; Hussain & Clarke, Phys. Fluids, vol. 20, 1977, pp. 1416–1426). Contrary to the universally accepted invariance of the total momentum flux $J_T(x)$ (non-dimensionalized by its inlet value) as a function of the streamwise distance $x$ , we prove that $J_T(x) >1$ – a condition that all TPJs must satisfy; surprisingly, prior theories and most experiments do not satisfy this condition. This motivated us to apply Lie symmetry analysis with translational and dilatational transformations of the modified equations (incorporating $J_T>1$ ), which yields scaling laws for key jet measures: the mean streamwise and transverse velocities $U(x,y)$ and $V(x,y)$ , the turbulence intensities, the Reynolds shear stress $-\rho \,\overline {u'v'}(x,y)$ , the mean pressure $P(x,y)$ , etc. Experiments satisfying $J_T(x)>1$ validate our predictions for all jet measures, including, among others, the profiles of $U$ , $V$ and $-\rho \,\overline {u'v'}$ . We further predict $U \sim x^{-0.24}$ , $V \sim x^{-0.45}$ , $-\rho \,\overline {u'v'}\sim x^{-0.69}$ , the mass flux $Q_m \sim x^{0.55}$ , and $J_T$ increases to approximately 1.5. Contrary to the classical linear jet spread, we find sublinear spread, with the jet half-width growing like $b(x)\sim x^{0.79}$ , indicating a narrower jet. Our predictions differ notably from most results reported in the literature. These contradictions demand revisiting jet studies involving carefully designed facilities and boundary conditions, and highly resolved simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
27.00%
发文量
945
审稿时长
5.1 months
期刊介绍: Journal of Fluid Mechanics is the leading international journal in the field and is essential reading for all those concerned with developments in fluid mechanics. It publishes authoritative articles covering theoretical, computational and experimental investigations of all aspects of the mechanics of fluids. Each issue contains papers on both the fundamental aspects of fluid mechanics, and their applications to other fields such as aeronautics, astrophysics, biology, chemical and mechanical engineering, hydraulics, meteorology, oceanography, geology, acoustics and combustion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信