{"title":"通过李对称分析的湍流射流理论:自由平面射流","authors":"Nadeem A. Malik, Fazle Hussain","doi":"10.1017/jfm.2024.527","DOIUrl":null,"url":null,"abstract":"A theory of incompressible turbulent plane jets (TPJs) is proposed by advancing an improved boundary layer approximation over the limiting classical – retaining more terms in the momentum balance equations. A pressure deficit inside the jet (with respect to the ambient) must exist due to transverse turbulence (Miller & Comings, <jats:italic>J. Fluid Mech.</jats:italic>, vol. 3, 1957, pp. 1–16; Hussain & Clarke, <jats:italic>Phys. Fluids</jats:italic>, vol. 20, 1977, pp. 1416–1426). Contrary to the universally accepted invariance of the total momentum flux <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005275_inline1.png\"/> <jats:tex-math>$J_T(x)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> (non-dimensionalized by its inlet value) as a function of the streamwise distance <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005275_inline2.png\"/> <jats:tex-math>$x$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, we prove that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005275_inline3.png\"/> <jats:tex-math>$J_T(x) >1$</jats:tex-math> </jats:alternatives> </jats:inline-formula> – a condition that all TPJs must satisfy; surprisingly, prior theories and most experiments do not satisfy this condition. This motivated us to apply Lie symmetry analysis with translational and dilatational transformations of the modified equations (incorporating <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005275_inline4.png\"/> <jats:tex-math>$J_T>1$</jats:tex-math> </jats:alternatives> </jats:inline-formula>), which yields scaling laws for key jet measures: the mean streamwise and transverse velocities <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005275_inline5.png\"/> <jats:tex-math>$U(x,y)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005275_inline6.png\"/> <jats:tex-math>$V(x,y)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, the turbulence intensities, the Reynolds shear stress <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005275_inline8.png\"/> <jats:tex-math>$-\\rho \\,\\overline {u'v'}(x,y)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, the mean pressure <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005275_inline9.png\"/> <jats:tex-math>$P(x,y)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, etc. Experiments satisfying <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005275_inline10.png\"/> <jats:tex-math>$J_T(x)>1$</jats:tex-math> </jats:alternatives> </jats:inline-formula> validate our predictions for all jet measures, including, among others, the profiles of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005275_inline11.png\"/> <jats:tex-math>$U$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005275_inline12.png\"/> <jats:tex-math>$V$</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005275_inline14.png\"/> <jats:tex-math>$-\\rho \\,\\overline {u'v'}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We further predict <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005275_inline15.png\"/> <jats:tex-math>$U \\sim x^{-0.24}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005275_inline16.png\"/> <jats:tex-math>$V \\sim x^{-0.45}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005275_inline18.png\"/> <jats:tex-math>$-\\rho \\,\\overline {u'v'}\\sim x^{-0.69}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, the mass flux <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005275_inline19.png\"/> <jats:tex-math>$Q_m \\sim x^{0.55}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005275_inline20.png\"/> <jats:tex-math>$J_T$</jats:tex-math> </jats:alternatives> </jats:inline-formula> increases to approximately 1.5. Contrary to the classical linear jet spread, we find sublinear spread, with the jet half-width growing like <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024005275_inline21.png\"/> <jats:tex-math>$b(x)\\sim x^{0.79}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, indicating a narrower jet. Our predictions differ notably from most results reported in the literature. These contradictions demand revisiting jet studies involving carefully designed facilities and boundary conditions, and highly resolved simulations.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"46 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Turbulent jet theory via Lie symmetry analysis: the free plane jet\",\"authors\":\"Nadeem A. Malik, Fazle Hussain\",\"doi\":\"10.1017/jfm.2024.527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A theory of incompressible turbulent plane jets (TPJs) is proposed by advancing an improved boundary layer approximation over the limiting classical – retaining more terms in the momentum balance equations. A pressure deficit inside the jet (with respect to the ambient) must exist due to transverse turbulence (Miller & Comings, <jats:italic>J. Fluid Mech.</jats:italic>, vol. 3, 1957, pp. 1–16; Hussain & Clarke, <jats:italic>Phys. Fluids</jats:italic>, vol. 20, 1977, pp. 1416–1426). Contrary to the universally accepted invariance of the total momentum flux <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005275_inline1.png\\\"/> <jats:tex-math>$J_T(x)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> (non-dimensionalized by its inlet value) as a function of the streamwise distance <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005275_inline2.png\\\"/> <jats:tex-math>$x$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, we prove that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005275_inline3.png\\\"/> <jats:tex-math>$J_T(x) >1$</jats:tex-math> </jats:alternatives> </jats:inline-formula> – a condition that all TPJs must satisfy; surprisingly, prior theories and most experiments do not satisfy this condition. This motivated us to apply Lie symmetry analysis with translational and dilatational transformations of the modified equations (incorporating <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005275_inline4.png\\\"/> <jats:tex-math>$J_T>1$</jats:tex-math> </jats:alternatives> </jats:inline-formula>), which yields scaling laws for key jet measures: the mean streamwise and transverse velocities <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005275_inline5.png\\\"/> <jats:tex-math>$U(x,y)$</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005275_inline6.png\\\"/> <jats:tex-math>$V(x,y)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, the turbulence intensities, the Reynolds shear stress <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005275_inline8.png\\\"/> <jats:tex-math>$-\\\\rho \\\\,\\\\overline {u'v'}(x,y)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, the mean pressure <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005275_inline9.png\\\"/> <jats:tex-math>$P(x,y)$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, etc. Experiments satisfying <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005275_inline10.png\\\"/> <jats:tex-math>$J_T(x)>1$</jats:tex-math> </jats:alternatives> </jats:inline-formula> validate our predictions for all jet measures, including, among others, the profiles of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005275_inline11.png\\\"/> <jats:tex-math>$U$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005275_inline12.png\\\"/> <jats:tex-math>$V$</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005275_inline14.png\\\"/> <jats:tex-math>$-\\\\rho \\\\,\\\\overline {u'v'}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>. We further predict <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005275_inline15.png\\\"/> <jats:tex-math>$U \\\\sim x^{-0.24}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005275_inline16.png\\\"/> <jats:tex-math>$V \\\\sim x^{-0.45}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005275_inline18.png\\\"/> <jats:tex-math>$-\\\\rho \\\\,\\\\overline {u'v'}\\\\sim x^{-0.69}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, the mass flux <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005275_inline19.png\\\"/> <jats:tex-math>$Q_m \\\\sim x^{0.55}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005275_inline20.png\\\"/> <jats:tex-math>$J_T$</jats:tex-math> </jats:alternatives> </jats:inline-formula> increases to approximately 1.5. Contrary to the classical linear jet spread, we find sublinear spread, with the jet half-width growing like <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024005275_inline21.png\\\"/> <jats:tex-math>$b(x)\\\\sim x^{0.79}$</jats:tex-math> </jats:alternatives> </jats:inline-formula>, indicating a narrower jet. Our predictions differ notably from most results reported in the literature. These contradictions demand revisiting jet studies involving carefully designed facilities and boundary conditions, and highly resolved simulations.\",\"PeriodicalId\":15853,\"journal\":{\"name\":\"Journal of Fluid Mechanics\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/jfm.2024.527\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/jfm.2024.527","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Turbulent jet theory via Lie symmetry analysis: the free plane jet
A theory of incompressible turbulent plane jets (TPJs) is proposed by advancing an improved boundary layer approximation over the limiting classical – retaining more terms in the momentum balance equations. A pressure deficit inside the jet (with respect to the ambient) must exist due to transverse turbulence (Miller & Comings, J. Fluid Mech., vol. 3, 1957, pp. 1–16; Hussain & Clarke, Phys. Fluids, vol. 20, 1977, pp. 1416–1426). Contrary to the universally accepted invariance of the total momentum flux $J_T(x)$ (non-dimensionalized by its inlet value) as a function of the streamwise distance $x$, we prove that $J_T(x) >1$ – a condition that all TPJs must satisfy; surprisingly, prior theories and most experiments do not satisfy this condition. This motivated us to apply Lie symmetry analysis with translational and dilatational transformations of the modified equations (incorporating $J_T>1$), which yields scaling laws for key jet measures: the mean streamwise and transverse velocities $U(x,y)$ and $V(x,y)$, the turbulence intensities, the Reynolds shear stress $-\rho \,\overline {u'v'}(x,y)$, the mean pressure $P(x,y)$, etc. Experiments satisfying $J_T(x)>1$ validate our predictions for all jet measures, including, among others, the profiles of $U$, $V$ and $-\rho \,\overline {u'v'}$. We further predict $U \sim x^{-0.24}$, $V \sim x^{-0.45}$, $-\rho \,\overline {u'v'}\sim x^{-0.69}$, the mass flux $Q_m \sim x^{0.55}$, and $J_T$ increases to approximately 1.5. Contrary to the classical linear jet spread, we find sublinear spread, with the jet half-width growing like $b(x)\sim x^{0.79}$, indicating a narrower jet. Our predictions differ notably from most results reported in the literature. These contradictions demand revisiting jet studies involving carefully designed facilities and boundary conditions, and highly resolved simulations.
期刊介绍:
Journal of Fluid Mechanics is the leading international journal in the field and is essential reading for all those concerned with developments in fluid mechanics. It publishes authoritative articles covering theoretical, computational and experimental investigations of all aspects of the mechanics of fluids. Each issue contains papers on both the fundamental aspects of fluid mechanics, and their applications to other fields such as aeronautics, astrophysics, biology, chemical and mechanical engineering, hydraulics, meteorology, oceanography, geology, acoustics and combustion.