存在凝结剂的非局部重力波湍流

IF 3.6 2区 工程技术 Q1 MECHANICS
Alexander O. Korotkevich, Sergey V. Nazarenko, Yulin Pan, Jalal Shatah
{"title":"存在凝结剂的非局部重力波湍流","authors":"Alexander O. Korotkevich, Sergey V. Nazarenko, Yulin Pan, Jalal Shatah","doi":"10.1017/jfm.2024.423","DOIUrl":null,"url":null,"abstract":"The <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024004233_inline1.png\"/> <jats:tex-math>$k^{-23/6}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> wave action spectrum with an inverse cascade is one of the fundamental Kolmogorov–Zakharov solutions for gravity wave turbulence, which is part of the citation for the Dirac Medal in 2003. Instead of confirming this solution, however, several existing simulations and experiments suggest a spectrum of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022112024004233_inline2.png\"/> <jats:tex-math>$k^{-3}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> in set-ups corresponding to the inverse cascade. We provide a theoretical explanation for the latter, considering the condensate that naturally forms in finite domains of experiments/simulations. Our new theory hinges on: (1) derivation of a spectral diffusion equation when non-local interactions with the condensate become dominant, for the first time systematically formulated for quartet-interaction systems; and (2) careful analysis of the asymptotics of interaction coefficient with a remarkable cancellation of all leading-order terms.","PeriodicalId":15853,"journal":{"name":"Journal of Fluid Mechanics","volume":"7 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-local gravity wave turbulence in presence of condensate\",\"authors\":\"Alexander O. Korotkevich, Sergey V. Nazarenko, Yulin Pan, Jalal Shatah\",\"doi\":\"10.1017/jfm.2024.423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024004233_inline1.png\\\"/> <jats:tex-math>$k^{-23/6}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> wave action spectrum with an inverse cascade is one of the fundamental Kolmogorov–Zakharov solutions for gravity wave turbulence, which is part of the citation for the Dirac Medal in 2003. Instead of confirming this solution, however, several existing simulations and experiments suggest a spectrum of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022112024004233_inline2.png\\\"/> <jats:tex-math>$k^{-3}$</jats:tex-math> </jats:alternatives> </jats:inline-formula> in set-ups corresponding to the inverse cascade. We provide a theoretical explanation for the latter, considering the condensate that naturally forms in finite domains of experiments/simulations. Our new theory hinges on: (1) derivation of a spectral diffusion equation when non-local interactions with the condensate become dominant, for the first time systematically formulated for quartet-interaction systems; and (2) careful analysis of the asymptotics of interaction coefficient with a remarkable cancellation of all leading-order terms.\",\"PeriodicalId\":15853,\"journal\":{\"name\":\"Journal of Fluid Mechanics\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/jfm.2024.423\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/jfm.2024.423","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

具有反级联的 $k^{-23/6}$ 波作用谱是重力波湍流的基本科尔莫戈罗夫-扎哈罗夫解法之一,也是 2003 年狄拉克奖章的引文之一。然而,现有的一些模拟和实验并没有证实这一解决方案,反而表明在与反级联相对应的设置中存在 $k^{-3}$ 的频谱。考虑到在实验/模拟的有限域中自然形成的凝聚态,我们为后者提供了理论解释。我们的新理论取决于(1) 当与凝结物的非局部相互作用成为主导时,推导出一个谱扩散方程,这是第一次系统地为四元相互作用系统制定这个方程;(2) 仔细分析相互作用系数的渐近线,显著取消所有前导阶项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-local gravity wave turbulence in presence of condensate
The $k^{-23/6}$ wave action spectrum with an inverse cascade is one of the fundamental Kolmogorov–Zakharov solutions for gravity wave turbulence, which is part of the citation for the Dirac Medal in 2003. Instead of confirming this solution, however, several existing simulations and experiments suggest a spectrum of $k^{-3}$ in set-ups corresponding to the inverse cascade. We provide a theoretical explanation for the latter, considering the condensate that naturally forms in finite domains of experiments/simulations. Our new theory hinges on: (1) derivation of a spectral diffusion equation when non-local interactions with the condensate become dominant, for the first time systematically formulated for quartet-interaction systems; and (2) careful analysis of the asymptotics of interaction coefficient with a remarkable cancellation of all leading-order terms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
27.00%
发文量
945
审稿时长
5.1 months
期刊介绍: Journal of Fluid Mechanics is the leading international journal in the field and is essential reading for all those concerned with developments in fluid mechanics. It publishes authoritative articles covering theoretical, computational and experimental investigations of all aspects of the mechanics of fluids. Each issue contains papers on both the fundamental aspects of fluid mechanics, and their applications to other fields such as aeronautics, astrophysics, biology, chemical and mechanical engineering, hydraulics, meteorology, oceanography, geology, acoustics and combustion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信