Lee-Ad Gottlieb, Eran Kaufman, Aryeh Kontorovich, Gabriel Nivasch, Ofir Pele
{"title":"嵌套重心坐标系作为多面体近似和学习任务的显式特征图","authors":"Lee-Ad Gottlieb, Eran Kaufman, Aryeh Kontorovich, Gabriel Nivasch, Ofir Pele","doi":"10.1007/s10994-024-06596-x","DOIUrl":null,"url":null,"abstract":"<p>We introduce a new embedding technique based on a nested barycentric coordinate system. We show that our embedding can be used to transform the problems of polyhedron approximation, piecewise linear classification and convex regression into one of finding a <i>linear</i> classifier or regressor in a higher dimensional (but nevertheless quite sparse) representation. Our embedding maps a piecewise linear function into an everywhere-linear function, and allows us to invoke well-known algorithms for the latter problem to solve the former. We explain the applications of our embedding to the problems of approximating separating polyhedra—in fact, it can approximate any convex body and unions of convex bodies—as well as to classification by separating polyhedra, and to piecewise linear regression.\n</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nested barycentric coordinate system as an explicit feature map for polyhedra approximation and learning tasks\",\"authors\":\"Lee-Ad Gottlieb, Eran Kaufman, Aryeh Kontorovich, Gabriel Nivasch, Ofir Pele\",\"doi\":\"10.1007/s10994-024-06596-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce a new embedding technique based on a nested barycentric coordinate system. We show that our embedding can be used to transform the problems of polyhedron approximation, piecewise linear classification and convex regression into one of finding a <i>linear</i> classifier or regressor in a higher dimensional (but nevertheless quite sparse) representation. Our embedding maps a piecewise linear function into an everywhere-linear function, and allows us to invoke well-known algorithms for the latter problem to solve the former. We explain the applications of our embedding to the problems of approximating separating polyhedra—in fact, it can approximate any convex body and unions of convex bodies—as well as to classification by separating polyhedra, and to piecewise linear regression.\\n</p>\",\"PeriodicalId\":49900,\"journal\":{\"name\":\"Machine Learning\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10994-024-06596-x\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10994-024-06596-x","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Nested barycentric coordinate system as an explicit feature map for polyhedra approximation and learning tasks
We introduce a new embedding technique based on a nested barycentric coordinate system. We show that our embedding can be used to transform the problems of polyhedron approximation, piecewise linear classification and convex regression into one of finding a linear classifier or regressor in a higher dimensional (but nevertheless quite sparse) representation. Our embedding maps a piecewise linear function into an everywhere-linear function, and allows us to invoke well-known algorithms for the latter problem to solve the former. We explain the applications of our embedding to the problems of approximating separating polyhedra—in fact, it can approximate any convex body and unions of convex bodies—as well as to classification by separating polyhedra, and to piecewise linear regression.
期刊介绍:
Machine Learning serves as a global platform dedicated to computational approaches in learning. The journal reports substantial findings on diverse learning methods applied to various problems, offering support through empirical studies, theoretical analysis, or connections to psychological phenomena. It demonstrates the application of learning methods to solve significant problems and aims to enhance the conduct of machine learning research with a focus on verifiable and replicable evidence in published papers.