{"title":"评估用于 X(推特)上用户立场检测的大型语言模型","authors":"Margherita Gambini, Caterina Senette, Tiziano Fagni, Maurizio Tesconi","doi":"10.1007/s10994-024-06587-y","DOIUrl":null,"url":null,"abstract":"<p>Current stance detection methods employ topic-aligned data, resulting in many unexplored topics due to insufficient training samples. Large Language Models (LLMs) pre-trained on a vast amount of web data offer a viable solution when training data is unavailable. This work introduces <i>Tweets2Stance - T2S</i>, an unsupervised stance detection framework based on zero-shot classification, i.e. leveraging an LLM pre-trained on Natural Language Inference tasks. T2S detects a five-valued user’s stance on social-political statements by analyzing their X (Twitter) timeline. The Ground Truth of a user’s stance is obtained from Voting Advice Applications (VAAs). Through comprehensive experiments, a T2S’s optimal setting was identified for each election. Linguistic limitations related to the language model are further addressed by integrating state-of-the-art LLMs like GPT-4 and Mixtral into the <i>T2S</i> framework. The <i>T2S</i> framework’s generalization potential is demonstrated by measuring its performance (F1 and MAE scores) across nine datasets. These datasets were built by collecting tweets from competing parties’ Twitter accounts in nine political elections held in different countries from 2019 to 2021. The results, in terms of F1 and MAE scores, outperformed all baselines and approached the best scores for each election. This showcases the ability of T2S, particularly when combined with state-of-the-art LLMs, to generalize across different cultural-political contexts.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating large language models for user stance detection on X (Twitter)\",\"authors\":\"Margherita Gambini, Caterina Senette, Tiziano Fagni, Maurizio Tesconi\",\"doi\":\"10.1007/s10994-024-06587-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Current stance detection methods employ topic-aligned data, resulting in many unexplored topics due to insufficient training samples. Large Language Models (LLMs) pre-trained on a vast amount of web data offer a viable solution when training data is unavailable. This work introduces <i>Tweets2Stance - T2S</i>, an unsupervised stance detection framework based on zero-shot classification, i.e. leveraging an LLM pre-trained on Natural Language Inference tasks. T2S detects a five-valued user’s stance on social-political statements by analyzing their X (Twitter) timeline. The Ground Truth of a user’s stance is obtained from Voting Advice Applications (VAAs). Through comprehensive experiments, a T2S’s optimal setting was identified for each election. Linguistic limitations related to the language model are further addressed by integrating state-of-the-art LLMs like GPT-4 and Mixtral into the <i>T2S</i> framework. The <i>T2S</i> framework’s generalization potential is demonstrated by measuring its performance (F1 and MAE scores) across nine datasets. These datasets were built by collecting tweets from competing parties’ Twitter accounts in nine political elections held in different countries from 2019 to 2021. The results, in terms of F1 and MAE scores, outperformed all baselines and approached the best scores for each election. This showcases the ability of T2S, particularly when combined with state-of-the-art LLMs, to generalize across different cultural-political contexts.</p>\",\"PeriodicalId\":49900,\"journal\":{\"name\":\"Machine Learning\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10994-024-06587-y\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10994-024-06587-y","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Evaluating large language models for user stance detection on X (Twitter)
Current stance detection methods employ topic-aligned data, resulting in many unexplored topics due to insufficient training samples. Large Language Models (LLMs) pre-trained on a vast amount of web data offer a viable solution when training data is unavailable. This work introduces Tweets2Stance - T2S, an unsupervised stance detection framework based on zero-shot classification, i.e. leveraging an LLM pre-trained on Natural Language Inference tasks. T2S detects a five-valued user’s stance on social-political statements by analyzing their X (Twitter) timeline. The Ground Truth of a user’s stance is obtained from Voting Advice Applications (VAAs). Through comprehensive experiments, a T2S’s optimal setting was identified for each election. Linguistic limitations related to the language model are further addressed by integrating state-of-the-art LLMs like GPT-4 and Mixtral into the T2S framework. The T2S framework’s generalization potential is demonstrated by measuring its performance (F1 and MAE scores) across nine datasets. These datasets were built by collecting tweets from competing parties’ Twitter accounts in nine political elections held in different countries from 2019 to 2021. The results, in terms of F1 and MAE scores, outperformed all baselines and approached the best scores for each election. This showcases the ability of T2S, particularly when combined with state-of-the-art LLMs, to generalize across different cultural-political contexts.
期刊介绍:
Machine Learning serves as a global platform dedicated to computational approaches in learning. The journal reports substantial findings on diverse learning methods applied to various problems, offering support through empirical studies, theoretical analysis, or connections to psychological phenomena. It demonstrates the application of learning methods to solve significant problems and aims to enhance the conduct of machine learning research with a focus on verifiable and replicable evidence in published papers.