Yoon Young Choi, Kai Zhou, Ho Kun Woo, Diya Patel, Md Salauddin, Lili Cai
{"title":"具有自适应温度调节功能的集成传感辐射冷却智能纺织品","authors":"Yoon Young Choi, Kai Zhou, Ho Kun Woo, Diya Patel, Md Salauddin, Lili Cai","doi":"10.1021/acsmaterialslett.4c01624","DOIUrl":null,"url":null,"abstract":"Efficient and adaptive thermoregulation of smart wearable technologies could revolutionize the mitigation of health- and energy-related challenges posed by climate change. We developed a woven, thermally adaptive smart textile (TAST) with high solar reflectance and selective infrared emittance and transmittance using a scalable coaxial extrusion method to continuously manufacture core–sheath fibers. TAST enables passive outdoor radiative cooling by 6–10 °C compared to normal fabrics while preserving good mechanical strength, breathability, and washability. Due to the integration of capacitive sensing, radiative cooling, and Joule heating into the woven fibers, TAST can detect the physiological signals of the human body and adapt its thermoregulation function in response to changes in the ambient temperature and perspiration level. The superior intelligence and multifunctional performance of TAST represent a paradigm shift beyond current personal thermal management technologies for enhancing human health, wellness, and performance.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radiative Cooling Smart Textiles with Integrated Sensing for Adaptive Thermoregulation\",\"authors\":\"Yoon Young Choi, Kai Zhou, Ho Kun Woo, Diya Patel, Md Salauddin, Lili Cai\",\"doi\":\"10.1021/acsmaterialslett.4c01624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient and adaptive thermoregulation of smart wearable technologies could revolutionize the mitigation of health- and energy-related challenges posed by climate change. We developed a woven, thermally adaptive smart textile (TAST) with high solar reflectance and selective infrared emittance and transmittance using a scalable coaxial extrusion method to continuously manufacture core–sheath fibers. TAST enables passive outdoor radiative cooling by 6–10 °C compared to normal fabrics while preserving good mechanical strength, breathability, and washability. Due to the integration of capacitive sensing, radiative cooling, and Joule heating into the woven fibers, TAST can detect the physiological signals of the human body and adapt its thermoregulation function in response to changes in the ambient temperature and perspiration level. The superior intelligence and multifunctional performance of TAST represent a paradigm shift beyond current personal thermal management technologies for enhancing human health, wellness, and performance.\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acsmaterialslett.4c01624\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsmaterialslett.4c01624","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Radiative Cooling Smart Textiles with Integrated Sensing for Adaptive Thermoregulation
Efficient and adaptive thermoregulation of smart wearable technologies could revolutionize the mitigation of health- and energy-related challenges posed by climate change. We developed a woven, thermally adaptive smart textile (TAST) with high solar reflectance and selective infrared emittance and transmittance using a scalable coaxial extrusion method to continuously manufacture core–sheath fibers. TAST enables passive outdoor radiative cooling by 6–10 °C compared to normal fabrics while preserving good mechanical strength, breathability, and washability. Due to the integration of capacitive sensing, radiative cooling, and Joule heating into the woven fibers, TAST can detect the physiological signals of the human body and adapt its thermoregulation function in response to changes in the ambient temperature and perspiration level. The superior intelligence and multifunctional performance of TAST represent a paradigm shift beyond current personal thermal management technologies for enhancing human health, wellness, and performance.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.