{"title":"替代转录组与植物恢复能力:技术创新与生物学见解","authors":"Ashish Kumar Pathak, Raja Jeet, Mathilde Moens, Yogesh Gupta, Vani Sharma, Kaushal Kumar Bhati","doi":"10.1007/s13562-024-00909-w","DOIUrl":null,"url":null,"abstract":"<p>The development of advanced high-throughput sequencing approaches has revealed the biomolecular diversity associated with central genetic dogmas like never before. Big genomics data highlight the hidden complexity of the genetic regulation of cellular machinery and physiological responses to environmental stimuli. The investigation and identification of alternative mRNA forms and protein diversity as adaptation mechanisms to environmental stimuli is one such case of unparallel genetic complexity in plant cells. Alternative splicing and selection of alternative start and stop sites during and after transcription lead to conditional variants across protein families. The biological importance of many such proteins is well understood, especially during reprogramming of plant stress responses and development. Interestingly, valuable methodologies and technical leads in the genome and alternative transcriptome sequencing from animals and model plants are now laying the groundwork for similar studies in crops. However, identifying alternative transcriptomes remains a major challenge for higher plants. Therefore, there is a need for improved library preparation methods and data analysis pipelines. We sought to examine the status of alternative transcriptome-associated studies on plant physiological regulation in response to environmental adaptation. In addition, we evaluated the recent technological advances available for studying alternative transcriptomes in plants.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alternative transcriptomes and plant resilience: technological innovations and biological insights\",\"authors\":\"Ashish Kumar Pathak, Raja Jeet, Mathilde Moens, Yogesh Gupta, Vani Sharma, Kaushal Kumar Bhati\",\"doi\":\"10.1007/s13562-024-00909-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The development of advanced high-throughput sequencing approaches has revealed the biomolecular diversity associated with central genetic dogmas like never before. Big genomics data highlight the hidden complexity of the genetic regulation of cellular machinery and physiological responses to environmental stimuli. The investigation and identification of alternative mRNA forms and protein diversity as adaptation mechanisms to environmental stimuli is one such case of unparallel genetic complexity in plant cells. Alternative splicing and selection of alternative start and stop sites during and after transcription lead to conditional variants across protein families. The biological importance of many such proteins is well understood, especially during reprogramming of plant stress responses and development. Interestingly, valuable methodologies and technical leads in the genome and alternative transcriptome sequencing from animals and model plants are now laying the groundwork for similar studies in crops. However, identifying alternative transcriptomes remains a major challenge for higher plants. Therefore, there is a need for improved library preparation methods and data analysis pipelines. We sought to examine the status of alternative transcriptome-associated studies on plant physiological regulation in response to environmental adaptation. In addition, we evaluated the recent technological advances available for studying alternative transcriptomes in plants.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13562-024-00909-w\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13562-024-00909-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Alternative transcriptomes and plant resilience: technological innovations and biological insights
The development of advanced high-throughput sequencing approaches has revealed the biomolecular diversity associated with central genetic dogmas like never before. Big genomics data highlight the hidden complexity of the genetic regulation of cellular machinery and physiological responses to environmental stimuli. The investigation and identification of alternative mRNA forms and protein diversity as adaptation mechanisms to environmental stimuli is one such case of unparallel genetic complexity in plant cells. Alternative splicing and selection of alternative start and stop sites during and after transcription lead to conditional variants across protein families. The biological importance of many such proteins is well understood, especially during reprogramming of plant stress responses and development. Interestingly, valuable methodologies and technical leads in the genome and alternative transcriptome sequencing from animals and model plants are now laying the groundwork for similar studies in crops. However, identifying alternative transcriptomes remains a major challenge for higher plants. Therefore, there is a need for improved library preparation methods and data analysis pipelines. We sought to examine the status of alternative transcriptome-associated studies on plant physiological regulation in response to environmental adaptation. In addition, we evaluated the recent technological advances available for studying alternative transcriptomes in plants.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.