A. Pundir, M. S. Thakur, B. Goel, Radha, A. Kumar, S. Prakash, M. Thakur, M. Kumar
{"title":"制革废水管理创新:零液体排放技术综述","authors":"A. Pundir, M. S. Thakur, B. Goel, Radha, A. Kumar, S. Prakash, M. Thakur, M. Kumar","doi":"10.1007/s13762-024-05986-x","DOIUrl":null,"url":null,"abstract":"<p>The tanning industry, a significant contributor to global leather production, faces critical challenges in wastewater management due to the hazardous pollutants generated during processing. Zero liquid discharge (ZLD) systems present a sustainable solution by efficiently treating and reusing wastewater while minimizing environmental impact. This study aims to explore the successful implementation of ZLD in the tannery industry, considering its economic and environmental benefits. Through a comprehensive review of literature and case studies, this research assesses the factors contributing to ZLD success, potential barriers to widespread adoption, and future advancements in technology. Methodologies include analyzing existing ZLD implementations, evaluating cost analyses, and investigating potential advancements in ZLD technologies. Results demonstrate that while ZLD offers significant advantages in water conservation, resource recovery, and environmental protection, challenges such as high installation costs and technical complexities hinder widespread adoption. Addressing these challenges requires concerted efforts from stakeholders, including tannery owners, regulatory bodies, and technology providers. Future directions suggest the need for ongoing research and development to enhance ZLD efficiency and cost-effectiveness. By embracing ZLD systems, tanneries can achieve sustainable wastewater management, conserve water resources, and meet environmental standards, thereby advancing towards an environmentally conscious and socially responsible business approach.</p>","PeriodicalId":589,"journal":{"name":"International Journal of Environmental Science and Technology","volume":"7 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovations in tannery wastewater management: a review of zero liquid discharge technology\",\"authors\":\"A. Pundir, M. S. Thakur, B. Goel, Radha, A. Kumar, S. Prakash, M. Thakur, M. Kumar\",\"doi\":\"10.1007/s13762-024-05986-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The tanning industry, a significant contributor to global leather production, faces critical challenges in wastewater management due to the hazardous pollutants generated during processing. Zero liquid discharge (ZLD) systems present a sustainable solution by efficiently treating and reusing wastewater while minimizing environmental impact. This study aims to explore the successful implementation of ZLD in the tannery industry, considering its economic and environmental benefits. Through a comprehensive review of literature and case studies, this research assesses the factors contributing to ZLD success, potential barriers to widespread adoption, and future advancements in technology. Methodologies include analyzing existing ZLD implementations, evaluating cost analyses, and investigating potential advancements in ZLD technologies. Results demonstrate that while ZLD offers significant advantages in water conservation, resource recovery, and environmental protection, challenges such as high installation costs and technical complexities hinder widespread adoption. Addressing these challenges requires concerted efforts from stakeholders, including tannery owners, regulatory bodies, and technology providers. Future directions suggest the need for ongoing research and development to enhance ZLD efficiency and cost-effectiveness. By embracing ZLD systems, tanneries can achieve sustainable wastewater management, conserve water resources, and meet environmental standards, thereby advancing towards an environmentally conscious and socially responsible business approach.</p>\",\"PeriodicalId\":589,\"journal\":{\"name\":\"International Journal of Environmental Science and Technology\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Environmental Science and Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s13762-024-05986-x\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Environmental Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s13762-024-05986-x","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Innovations in tannery wastewater management: a review of zero liquid discharge technology
The tanning industry, a significant contributor to global leather production, faces critical challenges in wastewater management due to the hazardous pollutants generated during processing. Zero liquid discharge (ZLD) systems present a sustainable solution by efficiently treating and reusing wastewater while minimizing environmental impact. This study aims to explore the successful implementation of ZLD in the tannery industry, considering its economic and environmental benefits. Through a comprehensive review of literature and case studies, this research assesses the factors contributing to ZLD success, potential barriers to widespread adoption, and future advancements in technology. Methodologies include analyzing existing ZLD implementations, evaluating cost analyses, and investigating potential advancements in ZLD technologies. Results demonstrate that while ZLD offers significant advantages in water conservation, resource recovery, and environmental protection, challenges such as high installation costs and technical complexities hinder widespread adoption. Addressing these challenges requires concerted efforts from stakeholders, including tannery owners, regulatory bodies, and technology providers. Future directions suggest the need for ongoing research and development to enhance ZLD efficiency and cost-effectiveness. By embracing ZLD systems, tanneries can achieve sustainable wastewater management, conserve water resources, and meet environmental standards, thereby advancing towards an environmentally conscious and socially responsible business approach.
期刊介绍:
International Journal of Environmental Science and Technology (IJEST) is an international scholarly refereed research journal which aims to promote the theory and practice of environmental science and technology, innovation, engineering and management.
A broad outline of the journal''s scope includes: peer reviewed original research articles, case and technical reports, reviews and analyses papers, short communications and notes to the editor, in interdisciplinary information on the practice and status of research in environmental science and technology, both natural and man made.
The main aspects of research areas include, but are not exclusive to; environmental chemistry and biology, environments pollution control and abatement technology, transport and fate of pollutants in the environment, concentrations and dispersion of wastes in air, water, and soil, point and non-point sources pollution, heavy metals and organic compounds in the environment, atmospheric pollutants and trace gases, solid and hazardous waste management; soil biodegradation and bioremediation of contaminated sites; environmental impact assessment, industrial ecology, ecological and human risk assessment; improved energy management and auditing efficiency and environmental standards and criteria.