同源光滑连接共链 DGA

Pub Date : 2024-09-09 DOI:10.1007/s10468-024-10287-5
X.-F. Mao
{"title":"同源光滑连接共链 DGA","authors":"X.-F. Mao","doi":"10.1007/s10468-024-10287-5","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\mathscr {A}\\)</span> be a connected cochain DG algebra such that <span>\\(H(\\mathscr {A})\\)</span> is a Noetherian graded algebra. We give some criteria for <span>\\(\\mathscr {A}\\)</span> to be homologically smooth in terms of the singularity category, the cone length of the canonical module <i>k</i> and the global dimension of <span>\\(\\mathscr {A}\\)</span>. For any cohomologically finite DG <span>\\(\\mathscr {A}\\)</span>-module <i>M</i>, we show that it is compact when <span>\\(\\mathscr {A}\\)</span> is homologically smooth. If <span>\\(\\mathscr {A}\\)</span> is in addition Gorenstein, we get </p><div><div><span>$$\\begin{aligned} \\textrm{CMreg}M = \\textrm{depth}_{\\mathscr {A}}\\mathscr {A} + \\mathrm {Ext.reg}\\, M&lt;\\infty , \\end{aligned}$$</span></div></div><p>where <span>\\(\\textrm{CMreg}M\\)</span> is the Castelnuovo-Mumford regularity of <i>M</i>, <span>\\(\\textrm{depth}_{\\mathscr {A}}\\mathscr {A}\\)</span> is the depth of <span>\\(\\mathscr {A}\\)</span> and <span>\\( \\mathrm {Ext.reg}\\, M\\)</span> is the Ext-regularity of <i>M</i>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homologically Smooth Connected Cochain DGAs\",\"authors\":\"X.-F. Mao\",\"doi\":\"10.1007/s10468-024-10287-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(\\\\mathscr {A}\\\\)</span> be a connected cochain DG algebra such that <span>\\\\(H(\\\\mathscr {A})\\\\)</span> is a Noetherian graded algebra. We give some criteria for <span>\\\\(\\\\mathscr {A}\\\\)</span> to be homologically smooth in terms of the singularity category, the cone length of the canonical module <i>k</i> and the global dimension of <span>\\\\(\\\\mathscr {A}\\\\)</span>. For any cohomologically finite DG <span>\\\\(\\\\mathscr {A}\\\\)</span>-module <i>M</i>, we show that it is compact when <span>\\\\(\\\\mathscr {A}\\\\)</span> is homologically smooth. If <span>\\\\(\\\\mathscr {A}\\\\)</span> is in addition Gorenstein, we get </p><div><div><span>$$\\\\begin{aligned} \\\\textrm{CMreg}M = \\\\textrm{depth}_{\\\\mathscr {A}}\\\\mathscr {A} + \\\\mathrm {Ext.reg}\\\\, M&lt;\\\\infty , \\\\end{aligned}$$</span></div></div><p>where <span>\\\\(\\\\textrm{CMreg}M\\\\)</span> is the Castelnuovo-Mumford regularity of <i>M</i>, <span>\\\\(\\\\textrm{depth}_{\\\\mathscr {A}}\\\\mathscr {A}\\\\)</span> is the depth of <span>\\\\(\\\\mathscr {A}\\\\)</span> and <span>\\\\( \\\\mathrm {Ext.reg}\\\\, M\\\\)</span> is the Ext-regularity of <i>M</i>.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10468-024-10287-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-024-10287-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 \(\mathscr {A}\) 是一个连通的共链 DG 代数,使得 \(H(\mathscr {A})\) 是一个诺特等级代数。我们从奇异性类别、典型模块 k 的锥长以及 \(\mathscr {A}\) 的全局维度等方面给出了一些 \(\mathscr {A}\) 同调光滑的标准。对于任何同调有限的 DG \(\mathscr {A}\)模块 M,我们证明当 \(\mathscr {A}\)是同调光滑的时候它是紧凑的。如果 \(\mathscr {A}\) 另外是戈伦斯坦的,我们得到 $$\begin{aligned}\textrm{CMreg}M = \textrm{depth}_{\mathscr {A}}\mathscr {A}+ \mathrm {Ext.reg}\, M<\infty , \end{aligned}$$其中 \(\textrm{CMreg}M\) 是 M 的 Castelnuovo-Mumford 正则性, \(\textrm{depth}_{\mathscr {A}\mathscr {A}\) 是 \(\mathscr {A}\) 的深度, \( \mathrm {Ext.reg}\, M\) 是 \(\mathrm{CMreg}M\) 的正则性。reg}\, M\) 是 M 的 Ext-regularity.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Homologically Smooth Connected Cochain DGAs

Let \(\mathscr {A}\) be a connected cochain DG algebra such that \(H(\mathscr {A})\) is a Noetherian graded algebra. We give some criteria for \(\mathscr {A}\) to be homologically smooth in terms of the singularity category, the cone length of the canonical module k and the global dimension of \(\mathscr {A}\). For any cohomologically finite DG \(\mathscr {A}\)-module M, we show that it is compact when \(\mathscr {A}\) is homologically smooth. If \(\mathscr {A}\) is in addition Gorenstein, we get

$$\begin{aligned} \textrm{CMreg}M = \textrm{depth}_{\mathscr {A}}\mathscr {A} + \mathrm {Ext.reg}\, M<\infty , \end{aligned}$$

where \(\textrm{CMreg}M\) is the Castelnuovo-Mumford regularity of M, \(\textrm{depth}_{\mathscr {A}}\mathscr {A}\) is the depth of \(\mathscr {A}\) and \( \mathrm {Ext.reg}\, M\) is the Ext-regularity of M.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信