同源光滑连接共链 DGA

IF 0.5 4区 数学 Q3 MATHEMATICS
X.-F. Mao
{"title":"同源光滑连接共链 DGA","authors":"X.-F. Mao","doi":"10.1007/s10468-024-10287-5","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\mathscr {A}\\)</span> be a connected cochain DG algebra such that <span>\\(H(\\mathscr {A})\\)</span> is a Noetherian graded algebra. We give some criteria for <span>\\(\\mathscr {A}\\)</span> to be homologically smooth in terms of the singularity category, the cone length of the canonical module <i>k</i> and the global dimension of <span>\\(\\mathscr {A}\\)</span>. For any cohomologically finite DG <span>\\(\\mathscr {A}\\)</span>-module <i>M</i>, we show that it is compact when <span>\\(\\mathscr {A}\\)</span> is homologically smooth. If <span>\\(\\mathscr {A}\\)</span> is in addition Gorenstein, we get </p><div><div><span>$$\\begin{aligned} \\textrm{CMreg}M = \\textrm{depth}_{\\mathscr {A}}\\mathscr {A} + \\mathrm {Ext.reg}\\, M&lt;\\infty , \\end{aligned}$$</span></div></div><p>where <span>\\(\\textrm{CMreg}M\\)</span> is the Castelnuovo-Mumford regularity of <i>M</i>, <span>\\(\\textrm{depth}_{\\mathscr {A}}\\mathscr {A}\\)</span> is the depth of <span>\\(\\mathscr {A}\\)</span> and <span>\\( \\mathrm {Ext.reg}\\, M\\)</span> is the Ext-regularity of <i>M</i>.</p></div>","PeriodicalId":50825,"journal":{"name":"Algebras and Representation Theory","volume":"27 5","pages":"1931 - 1955"},"PeriodicalIF":0.5000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homologically Smooth Connected Cochain DGAs\",\"authors\":\"X.-F. Mao\",\"doi\":\"10.1007/s10468-024-10287-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(\\\\mathscr {A}\\\\)</span> be a connected cochain DG algebra such that <span>\\\\(H(\\\\mathscr {A})\\\\)</span> is a Noetherian graded algebra. We give some criteria for <span>\\\\(\\\\mathscr {A}\\\\)</span> to be homologically smooth in terms of the singularity category, the cone length of the canonical module <i>k</i> and the global dimension of <span>\\\\(\\\\mathscr {A}\\\\)</span>. For any cohomologically finite DG <span>\\\\(\\\\mathscr {A}\\\\)</span>-module <i>M</i>, we show that it is compact when <span>\\\\(\\\\mathscr {A}\\\\)</span> is homologically smooth. If <span>\\\\(\\\\mathscr {A}\\\\)</span> is in addition Gorenstein, we get </p><div><div><span>$$\\\\begin{aligned} \\\\textrm{CMreg}M = \\\\textrm{depth}_{\\\\mathscr {A}}\\\\mathscr {A} + \\\\mathrm {Ext.reg}\\\\, M&lt;\\\\infty , \\\\end{aligned}$$</span></div></div><p>where <span>\\\\(\\\\textrm{CMreg}M\\\\)</span> is the Castelnuovo-Mumford regularity of <i>M</i>, <span>\\\\(\\\\textrm{depth}_{\\\\mathscr {A}}\\\\mathscr {A}\\\\)</span> is the depth of <span>\\\\(\\\\mathscr {A}\\\\)</span> and <span>\\\\( \\\\mathrm {Ext.reg}\\\\, M\\\\)</span> is the Ext-regularity of <i>M</i>.</p></div>\",\"PeriodicalId\":50825,\"journal\":{\"name\":\"Algebras and Representation Theory\",\"volume\":\"27 5\",\"pages\":\"1931 - 1955\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebras and Representation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10468-024-10287-5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebras and Representation Theory","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-024-10287-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 \(\mathscr {A}\) 是一个连通的共链 DG 代数,使得 \(H(\mathscr {A})\) 是一个诺特等级代数。我们从奇异性类别、典型模块 k 的锥长以及 \(\mathscr {A}\) 的全局维度等方面给出了一些 \(\mathscr {A}\) 同调光滑的标准。对于任何同调有限的 DG \(\mathscr {A}\)模块 M,我们证明当 \(\mathscr {A}\)是同调光滑的时候它是紧凑的。如果 \(\mathscr {A}\) 另外是戈伦斯坦的,我们得到 $$\begin{aligned}\textrm{CMreg}M = \textrm{depth}_{\mathscr {A}}\mathscr {A}+ \mathrm {Ext.reg}\, M<\infty , \end{aligned}$$其中 \(\textrm{CMreg}M\) 是 M 的 Castelnuovo-Mumford 正则性, \(\textrm{depth}_{\mathscr {A}\mathscr {A}\) 是 \(\mathscr {A}\) 的深度, \( \mathrm {Ext.reg}\, M\) 是 \(\mathrm{CMreg}M\) 的正则性。reg}\, M\) 是 M 的 Ext-regularity.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homologically Smooth Connected Cochain DGAs

Let \(\mathscr {A}\) be a connected cochain DG algebra such that \(H(\mathscr {A})\) is a Noetherian graded algebra. We give some criteria for \(\mathscr {A}\) to be homologically smooth in terms of the singularity category, the cone length of the canonical module k and the global dimension of \(\mathscr {A}\). For any cohomologically finite DG \(\mathscr {A}\)-module M, we show that it is compact when \(\mathscr {A}\) is homologically smooth. If \(\mathscr {A}\) is in addition Gorenstein, we get

$$\begin{aligned} \textrm{CMreg}M = \textrm{depth}_{\mathscr {A}}\mathscr {A} + \mathrm {Ext.reg}\, M<\infty , \end{aligned}$$

where \(\textrm{CMreg}M\) is the Castelnuovo-Mumford regularity of M, \(\textrm{depth}_{\mathscr {A}}\mathscr {A}\) is the depth of \(\mathscr {A}\) and \( \mathrm {Ext.reg}\, M\) is the Ext-regularity of M.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Algebras and Representation Theory features carefully refereed papers relating, in its broadest sense, to the structure and representation theory of algebras, including Lie algebras and superalgebras, rings of differential operators, group rings and algebras, C*-algebras and Hopf algebras, with particular emphasis on quantum groups. The journal contains high level, significant and original research papers, as well as expository survey papers written by specialists who present the state-of-the-art of well-defined subjects or subdomains. Occasionally, special issues on specific subjects are published as well, the latter allowing specialists and non-specialists to quickly get acquainted with new developments and topics within the field of rings, algebras and their applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信