{"title":"利用热量材料中的固态相变储存潜热能","authors":"Žiga Ahčin, Andrej Kitanovski, Jaka Tušek","doi":"10.1016/j.xcrp.2024.102175","DOIUrl":null,"url":null,"abstract":"<p>Materials with solid-to-solid phase transformations have considerable potential for use in thermal energy storage systems. While these materials generally have lower latent heat than materials with a solid-to-liquid phase transformation, their significantly higher thermal conductivity enables rapid thermal charging/discharging. Here, we show that this property makes them particularly promising for thermal energy storage applications requiring highly dynamic operation. A numerical analysis (using an experimentally validated numerical model) has revealed that some materials with solid-to-solid phase transformations offer an excellent capacity-power trade-off for thermal energy storage applications compared to the corresponding conventional phase change materials. While most conventional phase change materials generally offer higher thermal capacity due to larger latent heat, some metallic materials with solid-state transformation (e.g., Ni-Ti-based alloys, Mn-Co-Ga-B alloys) exhibit up to 10 times higher thermal output powers. These results highlight a significant potential of caloric solid-state materials to outperform traditional latent thermal storage systems for certain applications.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Latent thermal energy storage using solid-state phase transformation in caloric materials\",\"authors\":\"Žiga Ahčin, Andrej Kitanovski, Jaka Tušek\",\"doi\":\"10.1016/j.xcrp.2024.102175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Materials with solid-to-solid phase transformations have considerable potential for use in thermal energy storage systems. While these materials generally have lower latent heat than materials with a solid-to-liquid phase transformation, their significantly higher thermal conductivity enables rapid thermal charging/discharging. Here, we show that this property makes them particularly promising for thermal energy storage applications requiring highly dynamic operation. A numerical analysis (using an experimentally validated numerical model) has revealed that some materials with solid-to-solid phase transformations offer an excellent capacity-power trade-off for thermal energy storage applications compared to the corresponding conventional phase change materials. While most conventional phase change materials generally offer higher thermal capacity due to larger latent heat, some metallic materials with solid-state transformation (e.g., Ni-Ti-based alloys, Mn-Co-Ga-B alloys) exhibit up to 10 times higher thermal output powers. These results highlight a significant potential of caloric solid-state materials to outperform traditional latent thermal storage systems for certain applications.</p>\",\"PeriodicalId\":9703,\"journal\":{\"name\":\"Cell Reports Physical Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Physical Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xcrp.2024.102175\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Physical Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.xcrp.2024.102175","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Latent thermal energy storage using solid-state phase transformation in caloric materials
Materials with solid-to-solid phase transformations have considerable potential for use in thermal energy storage systems. While these materials generally have lower latent heat than materials with a solid-to-liquid phase transformation, their significantly higher thermal conductivity enables rapid thermal charging/discharging. Here, we show that this property makes them particularly promising for thermal energy storage applications requiring highly dynamic operation. A numerical analysis (using an experimentally validated numerical model) has revealed that some materials with solid-to-solid phase transformations offer an excellent capacity-power trade-off for thermal energy storage applications compared to the corresponding conventional phase change materials. While most conventional phase change materials generally offer higher thermal capacity due to larger latent heat, some metallic materials with solid-state transformation (e.g., Ni-Ti-based alloys, Mn-Co-Ga-B alloys) exhibit up to 10 times higher thermal output powers. These results highlight a significant potential of caloric solid-state materials to outperform traditional latent thermal storage systems for certain applications.
期刊介绍:
Cell Reports Physical Science, a premium open-access journal from Cell Press, features high-quality, cutting-edge research spanning the physical sciences. It serves as an open forum fostering collaboration among physical scientists while championing open science principles. Published works must signify significant advancements in fundamental insight or technological applications within fields such as chemistry, physics, materials science, energy science, engineering, and related interdisciplinary studies. In addition to longer articles, the journal considers impactful short-form reports and short reviews covering recent literature in emerging fields. Continually adapting to the evolving open science landscape, the journal reviews its policies to align with community consensus and best practices.