Ze Li, Jiayang Li, Guiwen Qu, Kang Chen, Ye Liu, Sicheng Li, Canwen Chen, Yun Zhao, Jinjian Huang, Peige Wang, Xiuwen Wu, Jianan Ren
{"title":"多尺度水凝胶调节间充质干细胞命运,促进骨再生","authors":"Ze Li, Jiayang Li, Guiwen Qu, Kang Chen, Ye Liu, Sicheng Li, Canwen Chen, Yun Zhao, Jinjian Huang, Peige Wang, Xiuwen Wu, Jianan Ren","doi":"10.1016/j.xcrp.2024.102181","DOIUrl":null,"url":null,"abstract":"<p>Hydrogels are commonly utilized as a three-dimensional cell culture platform. High-stiffness hydrogels promote directional cell differentiation, but they may also restrict cellular activity. Here, we report a process utilizing sacrificial templates and nanoparticles for the preparation of multiscale hydrogels with macroporous and locally enhanced stiffness properties. The macroporous hydrogels provide ample space for cells, which facilitates cell activity and proliferation. Chemical doping of the nanoparticles creates a locally stiffness-enhanced region without affecting its macroscopic mechanical properties. This regional stiffness promotes osteogenic differentiation of encapsulated adipose-derived mesenchymal stem cells (ADSCs). Importantly, the functional activity of the ADSCs increases significantly after osteogenic differentiation in hydrogels. Notably, the hydrogels efficiently activate mechanotransduction signals in the ADSCs and influence their fate. In addition, ADSC-loaded multiscale hydrogels promote bone regeneration of rat cranial defects in animal experiments. Collectively, our findings demonstrate that this technique has promising applications in the biomedical field.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale hydrogel regulates mesenchymal stem cell fate for bone regeneration\",\"authors\":\"Ze Li, Jiayang Li, Guiwen Qu, Kang Chen, Ye Liu, Sicheng Li, Canwen Chen, Yun Zhao, Jinjian Huang, Peige Wang, Xiuwen Wu, Jianan Ren\",\"doi\":\"10.1016/j.xcrp.2024.102181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hydrogels are commonly utilized as a three-dimensional cell culture platform. High-stiffness hydrogels promote directional cell differentiation, but they may also restrict cellular activity. Here, we report a process utilizing sacrificial templates and nanoparticles for the preparation of multiscale hydrogels with macroporous and locally enhanced stiffness properties. The macroporous hydrogels provide ample space for cells, which facilitates cell activity and proliferation. Chemical doping of the nanoparticles creates a locally stiffness-enhanced region without affecting its macroscopic mechanical properties. This regional stiffness promotes osteogenic differentiation of encapsulated adipose-derived mesenchymal stem cells (ADSCs). Importantly, the functional activity of the ADSCs increases significantly after osteogenic differentiation in hydrogels. Notably, the hydrogels efficiently activate mechanotransduction signals in the ADSCs and influence their fate. In addition, ADSC-loaded multiscale hydrogels promote bone regeneration of rat cranial defects in animal experiments. Collectively, our findings demonstrate that this technique has promising applications in the biomedical field.</p>\",\"PeriodicalId\":9703,\"journal\":{\"name\":\"Cell Reports Physical Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Physical Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xcrp.2024.102181\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Physical Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.xcrp.2024.102181","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Multiscale hydrogel regulates mesenchymal stem cell fate for bone regeneration
Hydrogels are commonly utilized as a three-dimensional cell culture platform. High-stiffness hydrogels promote directional cell differentiation, but they may also restrict cellular activity. Here, we report a process utilizing sacrificial templates and nanoparticles for the preparation of multiscale hydrogels with macroporous and locally enhanced stiffness properties. The macroporous hydrogels provide ample space for cells, which facilitates cell activity and proliferation. Chemical doping of the nanoparticles creates a locally stiffness-enhanced region without affecting its macroscopic mechanical properties. This regional stiffness promotes osteogenic differentiation of encapsulated adipose-derived mesenchymal stem cells (ADSCs). Importantly, the functional activity of the ADSCs increases significantly after osteogenic differentiation in hydrogels. Notably, the hydrogels efficiently activate mechanotransduction signals in the ADSCs and influence their fate. In addition, ADSC-loaded multiscale hydrogels promote bone regeneration of rat cranial defects in animal experiments. Collectively, our findings demonstrate that this technique has promising applications in the biomedical field.
期刊介绍:
Cell Reports Physical Science, a premium open-access journal from Cell Press, features high-quality, cutting-edge research spanning the physical sciences. It serves as an open forum fostering collaboration among physical scientists while championing open science principles. Published works must signify significant advancements in fundamental insight or technological applications within fields such as chemistry, physics, materials science, energy science, engineering, and related interdisciplinary studies. In addition to longer articles, the journal considers impactful short-form reports and short reviews covering recent literature in emerging fields. Continually adapting to the evolving open science landscape, the journal reviews its policies to align with community consensus and best practices.