Ziyong Li, Yanwen Jia, Ran Xiao, Juzheng Chen, Hao Wu, Xiewen Wen, Yang Lu
{"title":"作为机械超材料的三维打印熔融石英玻璃微晶格","authors":"Ziyong Li, Yanwen Jia, Ran Xiao, Juzheng Chen, Hao Wu, Xiewen Wen, Yang Lu","doi":"10.1016/j.xcrp.2024.102172","DOIUrl":null,"url":null,"abstract":"<p>Glass metamaterials that integrate optical transparency, chemical stability, and mechanical robustness are essential for satisfying the specific requirements of diverse fields, such as electronic screens or structural glazing. Yet, in practice, the requirements are only met by limited materials, and research in this area is still in its infancy. Here, we successfully incorporate microlattice architectures into three-dimensional (3D)-printed glass and develop transparent glass mechanical metamaterials with lightweight and high strength. A series of transparent glass microlattice metamaterials featuring diverse structural configurations, including tunable relative density, controllable strut volume, and adjustable strut counts, have been fabricated and thoroughly investigated for their mechanical properties. This progress offers a basis for the systematic tailoring of mechanical properties in 3D-printed glass microlattices, thereby paving the way for high-strength transparent metamaterials that are significantly lighter than their solid counterparts while offering opportunities for multifunctional applications as well.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"30 1","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D-printed fused silica glass microlattice as mechanical metamaterial\",\"authors\":\"Ziyong Li, Yanwen Jia, Ran Xiao, Juzheng Chen, Hao Wu, Xiewen Wen, Yang Lu\",\"doi\":\"10.1016/j.xcrp.2024.102172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Glass metamaterials that integrate optical transparency, chemical stability, and mechanical robustness are essential for satisfying the specific requirements of diverse fields, such as electronic screens or structural glazing. Yet, in practice, the requirements are only met by limited materials, and research in this area is still in its infancy. Here, we successfully incorporate microlattice architectures into three-dimensional (3D)-printed glass and develop transparent glass mechanical metamaterials with lightweight and high strength. A series of transparent glass microlattice metamaterials featuring diverse structural configurations, including tunable relative density, controllable strut volume, and adjustable strut counts, have been fabricated and thoroughly investigated for their mechanical properties. This progress offers a basis for the systematic tailoring of mechanical properties in 3D-printed glass microlattices, thereby paving the way for high-strength transparent metamaterials that are significantly lighter than their solid counterparts while offering opportunities for multifunctional applications as well.</p>\",\"PeriodicalId\":9703,\"journal\":{\"name\":\"Cell Reports Physical Science\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Physical Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xcrp.2024.102172\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Physical Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.xcrp.2024.102172","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
3D-printed fused silica glass microlattice as mechanical metamaterial
Glass metamaterials that integrate optical transparency, chemical stability, and mechanical robustness are essential for satisfying the specific requirements of diverse fields, such as electronic screens or structural glazing. Yet, in practice, the requirements are only met by limited materials, and research in this area is still in its infancy. Here, we successfully incorporate microlattice architectures into three-dimensional (3D)-printed glass and develop transparent glass mechanical metamaterials with lightweight and high strength. A series of transparent glass microlattice metamaterials featuring diverse structural configurations, including tunable relative density, controllable strut volume, and adjustable strut counts, have been fabricated and thoroughly investigated for their mechanical properties. This progress offers a basis for the systematic tailoring of mechanical properties in 3D-printed glass microlattices, thereby paving the way for high-strength transparent metamaterials that are significantly lighter than their solid counterparts while offering opportunities for multifunctional applications as well.
期刊介绍:
Cell Reports Physical Science, a premium open-access journal from Cell Press, features high-quality, cutting-edge research spanning the physical sciences. It serves as an open forum fostering collaboration among physical scientists while championing open science principles. Published works must signify significant advancements in fundamental insight or technological applications within fields such as chemistry, physics, materials science, energy science, engineering, and related interdisciplinary studies. In addition to longer articles, the journal considers impactful short-form reports and short reviews covering recent literature in emerging fields. Continually adapting to the evolving open science landscape, the journal reviews its policies to align with community consensus and best practices.