N. A. Chaudhary, K. N. Shah, C. R. Vaja, V. A. Rana, Deepak Kumar, A. N. Prajapati
{"title":"正己醇和 DMF 混合物在 303.15 K 下的电极极化和离子传导弛豫:分子动力学的启示","authors":"N. A. Chaudhary, K. N. Shah, C. R. Vaja, V. A. Rana, Deepak Kumar, A. N. Prajapati","doi":"10.1007/s11581-024-05779-9","DOIUrl":null,"url":null,"abstract":"<p>Using a precision LCR meter, the real and imaginary components of the complex relative dielectric function (ε*(f) = ɛ'(f)—jɛ”(f)) of the binary mixtures of n-Hexanol and N, N-Dimethylformamide were measured in the frequency range of 20 Hz to 2 MHz at a constant temperature of 303.15 K. Complex relative dielectric function ε*(f), was then converted into various formalisms namely: complex electric modulus M*(f), complex electrical conductivity σ*(f), and complex impedance Z*(f) in order to explore the electric and dielectric characteristics of the liquid samples. Loss tangent (tan δ = ɛ\"/ɛ') was determined from the complex relative dielectric function ε*(f). Further, ε*(f) was fitted to the Cole–Cole relaxation model to determine different dielectric and electrical parameters. Relaxation time associated with various relaxation processes observed in the considered frequency range of applied ac electric field are determined. Measured dielectric data are used to gain information about the effect of electrode polarization relaxation and ionic conduction relaxation process in the given mixture. Various parameters, including Debye Length (λ<sub>D</sub>), Ion Mobility (μ), Mobile Ion Concentration (P<sub>0</sub>), and Ion Diffusivity (D) were computed for each binary mixture across constant temperature.</p>","PeriodicalId":599,"journal":{"name":"Ionics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrode polarization and ionic conduction relaxation in n-Hexanol and DMF Mixtures at 303.15 K: insights into molecular dynamics\",\"authors\":\"N. A. Chaudhary, K. N. Shah, C. R. Vaja, V. A. Rana, Deepak Kumar, A. N. Prajapati\",\"doi\":\"10.1007/s11581-024-05779-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Using a precision LCR meter, the real and imaginary components of the complex relative dielectric function (ε*(f) = ɛ'(f)—jɛ”(f)) of the binary mixtures of n-Hexanol and N, N-Dimethylformamide were measured in the frequency range of 20 Hz to 2 MHz at a constant temperature of 303.15 K. Complex relative dielectric function ε*(f), was then converted into various formalisms namely: complex electric modulus M*(f), complex electrical conductivity σ*(f), and complex impedance Z*(f) in order to explore the electric and dielectric characteristics of the liquid samples. Loss tangent (tan δ = ɛ\\\"/ɛ') was determined from the complex relative dielectric function ε*(f). Further, ε*(f) was fitted to the Cole–Cole relaxation model to determine different dielectric and electrical parameters. Relaxation time associated with various relaxation processes observed in the considered frequency range of applied ac electric field are determined. Measured dielectric data are used to gain information about the effect of electrode polarization relaxation and ionic conduction relaxation process in the given mixture. Various parameters, including Debye Length (λ<sub>D</sub>), Ion Mobility (μ), Mobile Ion Concentration (P<sub>0</sub>), and Ion Diffusivity (D) were computed for each binary mixture across constant temperature.</p>\",\"PeriodicalId\":599,\"journal\":{\"name\":\"Ionics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ionics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11581-024-05779-9\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11581-024-05779-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Electrode polarization and ionic conduction relaxation in n-Hexanol and DMF Mixtures at 303.15 K: insights into molecular dynamics
Using a precision LCR meter, the real and imaginary components of the complex relative dielectric function (ε*(f) = ɛ'(f)—jɛ”(f)) of the binary mixtures of n-Hexanol and N, N-Dimethylformamide were measured in the frequency range of 20 Hz to 2 MHz at a constant temperature of 303.15 K. Complex relative dielectric function ε*(f), was then converted into various formalisms namely: complex electric modulus M*(f), complex electrical conductivity σ*(f), and complex impedance Z*(f) in order to explore the electric and dielectric characteristics of the liquid samples. Loss tangent (tan δ = ɛ"/ɛ') was determined from the complex relative dielectric function ε*(f). Further, ε*(f) was fitted to the Cole–Cole relaxation model to determine different dielectric and electrical parameters. Relaxation time associated with various relaxation processes observed in the considered frequency range of applied ac electric field are determined. Measured dielectric data are used to gain information about the effect of electrode polarization relaxation and ionic conduction relaxation process in the given mixture. Various parameters, including Debye Length (λD), Ion Mobility (μ), Mobile Ion Concentration (P0), and Ion Diffusivity (D) were computed for each binary mixture across constant temperature.
期刊介绍:
Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.