一种基于氧化锌/ZIF-67 p-n 异质结的光充电电容器,显示出更强的光电压

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
APL Materials Pub Date : 2024-08-14 DOI:10.1063/5.0219883
Yanlong Lv, Xin Sun, Changhua Mi, Jianan Gu, Yanhong Wang, Meicheng Li
{"title":"一种基于氧化锌/ZIF-67 p-n 异质结的光充电电容器,显示出更强的光电压","authors":"Yanlong Lv, Xin Sun, Changhua Mi, Jianan Gu, Yanhong Wang, Meicheng Li","doi":"10.1063/5.0219883","DOIUrl":null,"url":null,"abstract":"The photo rechargeable device (PRD) has been continuously drawing attention because it combines energy conversion and storage in one device. As for the photoelectrode of PRD, the construction of heterojunction is of crucial importance to enhance the photo performance. In this work, a two-electrode photo rechargeable capacitor based on the p–n heterojunction of ZnO/ZIF-67 is fabricated. ZIF-67 not only serves as the energy storage material but also forms the p–n heterojunction together with ZnO. A fast volatilization method was adopted for the in situ growth of ZIF-67 on ZnO nanorods to ensure sufficient mass loading and fewer interface defects. The results show a photovoltage of 0.36 V (0.2 V higher than single ZnO), a specific capacitance of 759.0 mF/g, and an overall energy conversion efficiency of 0.49%. The enhanced photovoltage is attributed to the p–n heterojunction. Moreover, a practical button cell was also fabricated, with 91% Coulombic efficiency remaining after 3000 cycles in the dark.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A photo rechargeable capacitor based on the p–n heterojunction of ZnO/ZIF-67 showing enhanced photovoltage\",\"authors\":\"Yanlong Lv, Xin Sun, Changhua Mi, Jianan Gu, Yanhong Wang, Meicheng Li\",\"doi\":\"10.1063/5.0219883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The photo rechargeable device (PRD) has been continuously drawing attention because it combines energy conversion and storage in one device. As for the photoelectrode of PRD, the construction of heterojunction is of crucial importance to enhance the photo performance. In this work, a two-electrode photo rechargeable capacitor based on the p–n heterojunction of ZnO/ZIF-67 is fabricated. ZIF-67 not only serves as the energy storage material but also forms the p–n heterojunction together with ZnO. A fast volatilization method was adopted for the in situ growth of ZIF-67 on ZnO nanorods to ensure sufficient mass loading and fewer interface defects. The results show a photovoltage of 0.36 V (0.2 V higher than single ZnO), a specific capacitance of 759.0 mF/g, and an overall energy conversion efficiency of 0.49%. The enhanced photovoltage is attributed to the p–n heterojunction. Moreover, a practical button cell was also fabricated, with 91% Coulombic efficiency remaining after 3000 cycles in the dark.\",\"PeriodicalId\":7985,\"journal\":{\"name\":\"APL Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APL Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0219883\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0219883","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

光充电器件(PRD)集能量转换和储存于一体,因此一直备受关注。对于光充电器件的光电极来说,异质结的构造对于提高光电性能至关重要。本研究基于 ZnO/ZIF-67 的 p-n 异质结制作了一种双电极光充电电容器。ZIF-67 不仅是储能材料,还与 ZnO 一起形成了 p-n 异质结。在 ZnO 纳米棒上原位生长 ZIF-67 时采用了快速挥发法,以确保足够的质量负载和较少的界面缺陷。结果显示,ZIF-67 的光电压为 0.36 V(比单一氧化锌高 0.2 V),比电容为 759.0 mF/g,整体能量转换效率为 0.49%。光电压的增强归功于 p-n 异质结。此外,还制作出了一种实用的纽扣电池,在黑暗中循环 3000 次后,库仑效率仍高达 91%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A photo rechargeable capacitor based on the p–n heterojunction of ZnO/ZIF-67 showing enhanced photovoltage
The photo rechargeable device (PRD) has been continuously drawing attention because it combines energy conversion and storage in one device. As for the photoelectrode of PRD, the construction of heterojunction is of crucial importance to enhance the photo performance. In this work, a two-electrode photo rechargeable capacitor based on the p–n heterojunction of ZnO/ZIF-67 is fabricated. ZIF-67 not only serves as the energy storage material but also forms the p–n heterojunction together with ZnO. A fast volatilization method was adopted for the in situ growth of ZIF-67 on ZnO nanorods to ensure sufficient mass loading and fewer interface defects. The results show a photovoltage of 0.36 V (0.2 V higher than single ZnO), a specific capacitance of 759.0 mF/g, and an overall energy conversion efficiency of 0.49%. The enhanced photovoltage is attributed to the p–n heterojunction. Moreover, a practical button cell was also fabricated, with 91% Coulombic efficiency remaining after 3000 cycles in the dark.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
APL Materials
APL Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
9.60
自引率
3.30%
发文量
199
审稿时长
2 months
期刊介绍: APL Materials features original, experimental research on significant topical issues within the field of materials science. In order to highlight research at the forefront of materials science, emphasis is given to the quality and timeliness of the work. The journal considers theory or calculation when the work is particularly timely and relevant to applications. In addition to regular articles, the journal also publishes Special Topics, which report on cutting-edge areas in materials science, such as Perovskite Solar Cells, 2D Materials, and Beyond Lithium Ion Batteries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信