具有奇点细胞解法的品种动机

Bruno Stonek
{"title":"具有奇点细胞解法的品种动机","authors":"Bruno Stonek","doi":"arxiv-2408.05766","DOIUrl":null,"url":null,"abstract":"A complex variety $X$ admits a \\emph{cellular resolution of singularities} if\nthere exists a resolution of singularities $\\widetilde X\\to X$ such that its\nexceptional locus as well as $\\widetilde X$ and the singular locus of $X$ admit\na cellular decomposition. We give a concrete description of the motive with\ncompact support of $X$ in terms of its Borel--Moore homology, under some mild\nconditions. We give many examples, including rational projective curves and\ntoric varieties of dimension two and three.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The motive of a variety with cellular resolution of singularities\",\"authors\":\"Bruno Stonek\",\"doi\":\"arxiv-2408.05766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A complex variety $X$ admits a \\\\emph{cellular resolution of singularities} if\\nthere exists a resolution of singularities $\\\\widetilde X\\\\to X$ such that its\\nexceptional locus as well as $\\\\widetilde X$ and the singular locus of $X$ admit\\na cellular decomposition. We give a concrete description of the motive with\\ncompact support of $X$ in terms of its Borel--Moore homology, under some mild\\nconditions. We give many examples, including rational projective curves and\\ntoric varieties of dimension two and three.\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.05766\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.05766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果存在一个奇点的解析 $\widetilde X\to X$,使得它的奇异点以及 $\widetilde X$ 和 $X$ 的奇异点都承认蜂窝分解,那么复 variety $X$ 就承认蜂窝分解。在一些温和的条件下,我们用$X$的Borel--Moore同源性来具体描述具有紧凑支持的动机。我们举了很多例子,包括有理投影曲线和二维与三维的多子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The motive of a variety with cellular resolution of singularities
A complex variety $X$ admits a \emph{cellular resolution of singularities} if there exists a resolution of singularities $\widetilde X\to X$ such that its exceptional locus as well as $\widetilde X$ and the singular locus of $X$ admit a cellular decomposition. We give a concrete description of the motive with compact support of $X$ in terms of its Borel--Moore homology, under some mild conditions. We give many examples, including rational projective curves and toric varieties of dimension two and three.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信