针对倍增度量的细分-利普斯双滤波稀疏近似法

Michael Lesnick, Kenneth McCabe
{"title":"针对倍增度量的细分-利普斯双滤波稀疏近似法","authors":"Michael Lesnick, Kenneth McCabe","doi":"arxiv-2408.16716","DOIUrl":null,"url":null,"abstract":"The Vietoris-Rips filtration, the standard filtration on metric data in\ntopological data analysis, is notoriously sensitive to outliers. Sheehy's\nsubdivision-Rips bifiltration $\\mathcal{SR}(-)$ is a density-sensitive\nrefinement that is robust to outliers in a strong sense, but whose 0-skeleton\nhas exponential size. For $X$ a finite metric space of constant doubling\ndimension and fixed $\\epsilon>0$, we construct a $(1+\\epsilon)$-homotopy\ninterleaving approximation of $\\mathcal{SR}(X)$ whose $k$-skeleton has size\n$O(|X|^{k+2})$. For $k\\geq 1$ constant, the $k$-skeleton can be computed in\ntime $O(|X|^{k+3})$.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse Approximation of the Subdivision-Rips Bifiltration for Doubling Metrics\",\"authors\":\"Michael Lesnick, Kenneth McCabe\",\"doi\":\"arxiv-2408.16716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Vietoris-Rips filtration, the standard filtration on metric data in\\ntopological data analysis, is notoriously sensitive to outliers. Sheehy's\\nsubdivision-Rips bifiltration $\\\\mathcal{SR}(-)$ is a density-sensitive\\nrefinement that is robust to outliers in a strong sense, but whose 0-skeleton\\nhas exponential size. For $X$ a finite metric space of constant doubling\\ndimension and fixed $\\\\epsilon>0$, we construct a $(1+\\\\epsilon)$-homotopy\\ninterleaving approximation of $\\\\mathcal{SR}(X)$ whose $k$-skeleton has size\\n$O(|X|^{k+2})$. For $k\\\\geq 1$ constant, the $k$-skeleton can be computed in\\ntime $O(|X|^{k+3})$.\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.16716\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Vietoris-Rips过滤法是在拓扑数据分析中对度量数据进行过滤的标准方法,但它对异常值的敏感性是众所周知的。Sheehy'ssubdivision-Rips bifiltration $\mathcal{SR}(-)$ 是一种对密度敏感的过滤,在强意义上对异常值具有鲁棒性,但其 0 骨架具有指数大小。对于具有恒定倍维度和固定$\epsilon>0$的有限度量空间$X$,我们构造了一个$(1+\epsilon)$同调交错近似$\mathcal{SR}(X)$,其$k$骨架的大小为$O(|X|^{k+2})$。对于$kgeq 1$常数,$k$骨架可以在$O(|X|^{k+3})$内计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse Approximation of the Subdivision-Rips Bifiltration for Doubling Metrics
The Vietoris-Rips filtration, the standard filtration on metric data in topological data analysis, is notoriously sensitive to outliers. Sheehy's subdivision-Rips bifiltration $\mathcal{SR}(-)$ is a density-sensitive refinement that is robust to outliers in a strong sense, but whose 0-skeleton has exponential size. For $X$ a finite metric space of constant doubling dimension and fixed $\epsilon>0$, we construct a $(1+\epsilon)$-homotopy interleaving approximation of $\mathcal{SR}(X)$ whose $k$-skeleton has size $O(|X|^{k+2})$. For $k\geq 1$ constant, the $k$-skeleton can be computed in time $O(|X|^{k+3})$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信