{"title":"针对倍增度量的细分-利普斯双滤波稀疏近似法","authors":"Michael Lesnick, Kenneth McCabe","doi":"arxiv-2408.16716","DOIUrl":null,"url":null,"abstract":"The Vietoris-Rips filtration, the standard filtration on metric data in\ntopological data analysis, is notoriously sensitive to outliers. Sheehy's\nsubdivision-Rips bifiltration $\\mathcal{SR}(-)$ is a density-sensitive\nrefinement that is robust to outliers in a strong sense, but whose 0-skeleton\nhas exponential size. For $X$ a finite metric space of constant doubling\ndimension and fixed $\\epsilon>0$, we construct a $(1+\\epsilon)$-homotopy\ninterleaving approximation of $\\mathcal{SR}(X)$ whose $k$-skeleton has size\n$O(|X|^{k+2})$. For $k\\geq 1$ constant, the $k$-skeleton can be computed in\ntime $O(|X|^{k+3})$.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse Approximation of the Subdivision-Rips Bifiltration for Doubling Metrics\",\"authors\":\"Michael Lesnick, Kenneth McCabe\",\"doi\":\"arxiv-2408.16716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Vietoris-Rips filtration, the standard filtration on metric data in\\ntopological data analysis, is notoriously sensitive to outliers. Sheehy's\\nsubdivision-Rips bifiltration $\\\\mathcal{SR}(-)$ is a density-sensitive\\nrefinement that is robust to outliers in a strong sense, but whose 0-skeleton\\nhas exponential size. For $X$ a finite metric space of constant doubling\\ndimension and fixed $\\\\epsilon>0$, we construct a $(1+\\\\epsilon)$-homotopy\\ninterleaving approximation of $\\\\mathcal{SR}(X)$ whose $k$-skeleton has size\\n$O(|X|^{k+2})$. For $k\\\\geq 1$ constant, the $k$-skeleton can be computed in\\ntime $O(|X|^{k+3})$.\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.16716\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sparse Approximation of the Subdivision-Rips Bifiltration for Doubling Metrics
The Vietoris-Rips filtration, the standard filtration on metric data in
topological data analysis, is notoriously sensitive to outliers. Sheehy's
subdivision-Rips bifiltration $\mathcal{SR}(-)$ is a density-sensitive
refinement that is robust to outliers in a strong sense, but whose 0-skeleton
has exponential size. For $X$ a finite metric space of constant doubling
dimension and fixed $\epsilon>0$, we construct a $(1+\epsilon)$-homotopy
interleaving approximation of $\mathcal{SR}(X)$ whose $k$-skeleton has size
$O(|X|^{k+2})$. For $k\geq 1$ constant, the $k$-skeleton can be computed in
time $O(|X|^{k+3})$.